L12-S01

Math 5760/6890: Introduction to Mathematical Finance Capital Asset Pricing Model

See Petters and Dong 2016, Section 4.1

Akil Narayan¹

¹Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute University of Utah

October 3, 2023

Capital Markets with Markowitz Portfolios

We are interested in building portfolios from weighted combinations of risky and a riskless asset:

- We have access to N risky securities, e.g., stocks. We've used standard Markowitz portfolio analysis to build efficient and optimal portfolios.
- With only risky securities, the efficient frontier is the upper half of the graph of a hyperbola.

Capital Markets with Markowitz Portfolios

We are interested in building portfolios from weighted combinations of risky and a riskless asset:

- We have access to N risky securities, e.g., stocks. We've used standard Markowitz portfolio analysis to build efficient and optimal portfolios.
- With only risky securities, the efficient frontier is the upper half of the graph of a hyperbola.
- In capital markets, a(n essentially) riskless asset with some fixed risk-free return rate r is available.
- Capital market theory demonstrates that the efficient frontier is a one-sided line connecting the risky security with the *market portfolio*, i.e., a unique efficient Markowitz portfolio.

Capital Markets with Markowitz Portfolios

We are interested in building portfolios from weighted combinations of risky and a riskless asset:

- We have access to N risky securities, e.g., stocks. We've used standard Markowitz portfolio analysis to build efficient and optimal portfolios.
- With only risky securities, the efficient frontier is the upper half of the graph of a hyperbola.
- In capital markets, a(n essentially) riskless asset with some fixed risk-free return rate r is available.
- Capital market theory demonstrates that the efficient frontier is a one-sided line connecting the risky security with the *market portfolio*, i.e., a unique efficient Markowitz portfolio.

We'll now discuss the capital asset pricing model, which is a useful tool in pricing securities.

Risk premiums

Risk premiums are simple ways to characterize the payoff for taking on risk.

Consider a captial market setup: there is a risk-free rate r, and risky securities, and a market portfolio having stochastic return R_M , with risk and expected return (σ_M, μ_M) , respectively.

(Of course, we assume $\mu_M > r.$)

Risk premiums

Risk premiums are simple ways to characterize the payoff for taking on risk.

Consider a captial market setup: there is a risk-free rate r, and risky securities, and a market portfolio having stochastic return R_M , with risk and expected return (σ_M, μ_M) , respectively.

(Of course, we assume $\mu_M > r.$)

Let R be the return rate of a (risky) security. (Perhaps it's one of the securities on the market.)

This security has its own risk-return profile (σ, μ) .

The *risk premium* k of this security is

 $k = \mu - r,$

which is essentially the bonus return of the security that offsets the cost of taking on risk.

Risk premiums

Risk premiums are simple ways to characterize the payoff for taking on risk.

Consider a captial market setup: there is a risk-free rate r, and risky securities, and a market portfolio having stochastic return R_M , with risk and expected return (σ_M, μ_M) , respectively.

(Of course, we assume $\mu_M > r$.)

Let R be the return rate of a (risky) security. (Perhaps it's one of the securities on the market.)

This security has its own risk-return profile (σ, μ) .

The *risk premium* k of this security is

$$k = \mu - r,$$

which is essentially the bonus return of the security that offsets the cost of taking on risk.

Every security has a premium, even the market portfolio:

$$k_M \coloneqq \mu_M - r. > 0$$

The *beta* metric

In the same capital market, we require the introduction of a particular risk metric for a security, its *beta*.

The "beta" of a security is a statistical measure of how much a security correlates with the market portfolio,

$$\beta := \frac{\operatorname{Cov}(R, R_M)}{\sigma_M^2} = \frac{\operatorname{Cov}(R, R_M)}{\sigma\sigma_M} \frac{\sigma}{\sigma_M} = \rho(R, R_M) \frac{\sigma}{\sigma_M}.$$

In the same capital market, we require the introduction of a particular risk metric for a security, its *beta*.

The "beta" of a security is a statistical measure of how much a security correlates with the market portfolio,

$$\beta := \frac{\operatorname{Cov}(R, R_M)}{\sigma_M^2} = \frac{\operatorname{Cov}(R, R_M)}{\sigma\sigma_M} \frac{\sigma}{\sigma_M} = \rho(R, R_M) \frac{\sigma}{\sigma_M}.$$

For example, this definition shows that β is a lower bound for the risk of the security R relative to the market portfolio risk:

$$|\beta| = |\rho(R, R_M)| \frac{\sigma}{\sigma_M} \leq \frac{\sigma}{\sigma_M}$$

In the same capital market, we require the introduction of a particular risk metric for a security, its *beta*.

The "beta" of a security is a statistical measure of how much a security correlates with the market portfolio,

$$\beta := \frac{\operatorname{Cov}(R, R_M)}{\sigma_M^2} = \frac{\operatorname{Cov}(R, R_M)}{\sigma\sigma_M} \frac{\sigma}{\sigma_M} = \rho(R, R_M) \frac{\sigma}{\sigma_M}.$$

For example, this definition shows that β is a lower bound for the risk of the security R relative to the market portfolio risk:

$$|\beta| = |\rho(R, R_M)| \frac{\sigma}{\sigma_M} \le \frac{\sigma}{\sigma_M}$$

In principle, the market portfolio also has a beta:

$$\beta_M = \frac{\operatorname{Cov}(R_M, R_M)}{\sigma_M^2} = 1.$$

The capital asset pricing theorem

We have two "measures" of a given security return rate R relative to the market:

- The security's risk premium k, which measures its advantage (relative to the market) for taking on risk.
- The security's beta β , which measures its volatility (relative to the market).

One suspects that these notions should be quantitatively relatable.

The capital asset pricing theorem

We have two "measures" of a given security return rate R relative to the market:

- The security's risk premium k, which measures its advantage (relative to the market) for taking on risk.
- The security's beta β , which measures its volatility (relative to the market).

One suspects that these notions should be quantitatively relatable.

Theorem (Capital asset pricing theorem)

The risk premium k and beta β of a risky security are related to the market risk premium k_M via

$$k = \beta k_M$$

I.e., this is,

$$\mu - r = \beta(\mu_M - r).$$

Pront'idea:
$$\beta = \frac{Cav(R, R_m)}{\sigma_{M}^2} = \frac{w^T A W_m}{w_m^T A W_m} = \dots = \frac{M-v}{M_m-v}$$

The capital asset pricing theorem

We have two "measures" of a given security return rate R relative to the market:

- The security's risk premium k, which measures its advantage (relative to the market) for taking on risk.
- The security's beta β , which measures its volatility (relative to the market).

One suspects that these notions should be quantitatively relatable.

Theorem (Capital asset pricing theorem)

The risk premium k and beta β of a risky security are related to the market risk premium k_M via

$$k = \beta k_M.$$

I.e., this is,

$$\mu - r = \beta(\mu_M - r).$$

The *Capital Asset Pricing Model* assesses prices on securities (e.g., through analysis of their risk premiums) through the theorem above.

The capital asset pricing model

$$\mu - r = \beta(\mu_M - r).$$

Some immediate consequences:

- A security's premium is *directy proportional* to its beta. The proportionality constant is just the market risk premium.
- $\beta < 0$: the security's premium behaves in an opposite manner to the market. (E.g., this is a good candidate for hedging.)
- $-~0\leqslant\beta\leqslant1$: the security tracks in the same direction as the market, with smaller or equal volatility.
- $\beta > 1$: the security tracks with the market, but has higher volatility (and higher premium).

Security pricing

Example

Consider a per-unit stock price S. Given the risk-free rate r and statistics for S(T) (its expectation and beta), what should today's price S(0) be?

 $R(T) = \frac{S(T) - S(D)}{S(D)} \not \not S(D) = \frac{S(T)}{1 + R(T)}$ $\bigcup IE$ $IER(T) = \frac{IES(T) - S(D)}{S(D)} \longrightarrow S(D) = \frac{IES(T)}{1 + IER(T)} = \frac{ES(T)}{1 + r + \beta(\mu_{M} - r)}$

The security market line

Because the beta is essentially a (properly scaled) proxy for σ , it is common to consider plots in the (β, μ) plane.

 $\mu = r + \beta(\mu_M - r),$

(assume MM>r)

The capital asset pricing model is given by,

The graph of this relation in the (β, μ) plane is called the *security market line*.

The security market line

Because the beta is essentially a (properly scaled) proxy for σ , it is common to consider plots in the (β, μ) plane.

The capital asset pricing model is given by,

$$\mu = r + \beta(\mu_M - r),$$

which is a linear relation.

The graph of this relation in the (β, μ) plane is called the *security market line*.

The security market line is one of the more useful tools for qualitatively determining valuation of stocks: Given a stock's β , if

- the expected return μ lies above the security market line, then the stock is overvalued.
- the expected return μ lies below the security market line, then the stock is undervalued.

Petters, Arlie O. and Xiaoying Dong (2016). An Introduction to Mathematical Finance with Applications: Understanding and Building Financial Intuition. Springer. ISBN: 978-1-4939-3783-7.