Math 5760/6890: Introduction to Mathematical Finance 2-Security Porftolios

See Fetters and Dong 2016, Sections 3.1-3.2

Offre hours on Thurs: $12-1$ pm
${ }^{1}$ Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute University of Utah

September 12, 2023

A brief announcement: AWM Mentoring Program

The Utah chapter of the Association for Women in Mathematics (AWM) invites folks to join it's AWM Mentoring Network:

The Mentoring Network connects graduate students and postdocs
in the mathematics department with undergraduates majoring, minoring, or interested in mathematics. The program is intended to support undergraduates in achieving their academic, research, and job-related goals and to cultivate a sense of community in mathematics.

After your initial meeting, we hope that you will continue to meet regularly throughout the school year. Mentor-mentee pairs tend to meet once per month. You'll also be invited to a kickoff event in early October where you can meet all the undergraduates, graduate students, and postdocs involved.

You need not identify as a woman to get involved. Signup is here: https://forms.gle/yVnC868KYmdS1FhB9

Please email uofuAWM@math.utah.edu for more information.

The first major topic in this course is the risk/reward/pricing assessment of financial portfolios.

A portfolio is a combination of (at least two) financial assets (typically securities).
Our goal is to analyze+engineer portfolios under some simplifying assumptions:

- no-arbitrage - no opportunities for riskless profits

The first major topic in this course is the risk/reward/pricing assessment of financial portfolios.

A portfolio is a combination of (at least two) financial assets (typically securities).
Our goal is to analyze+engineer portfolios under some simplifying assumptions:

- no-arbitrage - no opportunities for riskless profits
- rational acting - investors don't act against their interests, and act optimally

The first major topic in this course is the risk/reward/pricing assessment of financial portfolios.

A portfolio is a combination of (at least two) financial assets (typically securities).
Our goal is to analyze+engineer portfolios under some simplifying assumptions:

- no-arbitrage - no opportunities for riskless profits
- rational acting - investors don't act against their interests, and act optimally
- liquidity and efficiency - information and transactions can be communicated and transpire immediately

The first major topic in this course is the risk/reward/pricing assessment of financial portfolios.

A portfolio is a combination of (at least two) financial assets (typically securities).
Our goal is to analyze+engineer portfolios under some simplifying assumptions:

- no-arbitrage - no opportunities for riskless profits
- rational acting - investors don't act against their interests, and act optimally
- liquidity and efficiency - information and transactions can be communicated and transpire immediately
- no taxes, fees, or transaction costs

The first major topic in this course is the risk/reward/pricing assessment of financial portfolios.

A portfolio is a combination of (at least two) financial assets (typically securities).
Our goal is to analyze+engineer portfolios under some simplifying assumptions:

- no-arbitrage - no opportunities for riskless profits
- rational acting - investors don't act against their interests, and act optimally
- liquidity and efficiency - information and transactions can be communicated and transpire immediately
- no taxes, fees, or transaction costs
- an interest-free market (for now)

The first major topic in this course is the risk/reward/pricing assessment of financial portfolios.

A portfolio is a combination of (at least two) financial assets (typically securities).
Our goal is to analyze+engineer portfolios under some simplifying assumptions:

- no-arbitrage - no opportunities for riskless profits
- rational acting - investors don't act against their interests, and act optimally
- liquidity and efficiency - information and transactions can be communicated and transpire immediately
- no taxes, fees, or transaction costs
- an interest-free market (for now)
- the future behavior of assets is uncertain or random

The Markowitz model

On top of rational acting, we make some additional assumptions about investors that directly impact our goals:

- Investors care about the portfolio's rate of return (relative change in value)

The Markowitz model

On top of rational acting, we make some additional assumptions about investors that directly impact our goals:

- Investors care about the portfolio's rate of return (relative change in value)
- The "important" uncertainty characteristics of the return rate are risk and reward

The Markowitz model

On top of rational acting, we make some additional assumptions about investors that directly impact our goals:

- Investors care about the portfolio's rate of return (relative change in value)
- The "important" uncertainty characteristics of the return rate are risk and reward
- In an uncertain market, the reward is the mean return rate

The Markowitz model

On top of rational acting, we make some additional assumptions about investors that directly impact our goals:

- Investors care about the portfolio's rate of return (relative change in value)
- The "important" uncertainty characteristics of the return rate are risk and reward
- In an uncertain market, the reward is the mean return rate
- In an uncertain market, the risk is the standard deviation of the return rate

On top of rational acting, we make some additional assumptions about investors that directly impact our goals:

- Investors care about the portfolio's rate of return (relative change in value)
- The "important" uncertainty characteristics of the return rate are risk and reward
- In an uncertain market, the reward is the mean return rate
- In an uncertain market, the risk is the standard deviation of the return rate
- Among several portfolio options with fixed reward, an investor will choose the one with smallest risk

On top of rational acting, we make some additional assumptions about investors that directly impact our goals:

- Investors care about the portfolio's rate of return (relative change in value)
- The "important" uncertainty characteristics of the return rate are risk and reward
- In an uncertain market, the reward is the mean return rate
- In an uncertain market, the risk is the standard deviation of the return rate
- Among several portfolio options with fixed reward, an investor will choose the one with smallest risk
- Among several portfolio options with fixed risk, an investor will choose the one with largest reward

On top of rational acting, we make some additional assumptions about investors that directly impact our goals:

- Investors care about the portfolio's rate of return (relative change in value)
- The "important" uncertainty characteristics of the return rate are risk and reward
- In an uncertain market, the reward is the mean return rate
- In an uncertain market, the risk is the standard deviation of the return rate
- Among several portfolio options with fixed reward, an investor will choose the one with smallest risk
- Among several portfolio options with fixed risk, an investor will choose the one with largest reward
Because of the reliance on first- and second-order statistics, Markowitz (or "Modern") portfolio theory is an example of mean-variance analysis.

Investors in the one-period model

We will consider the one-period model:

- Today at time $t=0$ all assets have known, deterministic prices

Investors in the one-period model

$$
\text { bol: } \quad 0 \rightarrow t_{0} \quad \text { mostly: } T=1
$$

We will consider the one-period model:

- Today at time $t=0$ all assets have known, deterministic prices
- "Tomorrow" at time $t=T>0$, the asset prices become random variables

We will consider the one-period model:

- Today at time $t=0$ all assets have known, deterministic prices
- "Tomorrow" at time $t=T>0$, the asset prices become random variables
- No actions are possible between $t=0$ and $t=T$ (no transactions, adjustment of exposure, etc.)

We will consider the one-period model:

- Today at time $t=0$ all assets have known, deterministic prices
- "Tomorrow" at time $t=T>0$, the asset prices become random variables
- No actions are possible between $t=0$ and $t=T$ (no transactions, adjustment of exposure, etc.)

We will also assume that investors have an internal understanding of their own risk tolerance as a function of reward.

Our job is to engineer a portfolio achieving, e.g., optimal risk for a fixed given reward.

Efficient portfolios

We have discussed enough to articulate a slightly more quantitative description of our goal.
Let $V=V(t)$ be the (total) value of the portfolio, so that

$$
R=R(T)=\frac{V(T)-V(0)}{V(0)}
$$

is the return rate.

Efficient portfolios

We have discussed enough to articulate a slightly more quantitative description of our goal.
Let $V=V(t)$ be the (total) value of the portfolio, so that

$$
R=R(T)=\frac{V(T)-V(0)}{V(0)}
$$

is the return rate.

Definition

A portfolio is an efficient portfolio if one cannot

- decrease risk without decreasing reward
- increase reward without increasing risk

Notation and setup
We have already discussed seen notation that parameterizes portfolios. Let's review:

- A portfolio is comprised of N securities, $N \geqslant 2$.

Notation and setup
We have already discussed seen notation that parameterizes portfolios. Let's review:

- A portfolio is comprised of N securities, $N \geqslant 2$.
- The price per share/unit of security j is $S_{j}(t)$.

Notation and setup
We have already discussed seen notation that parameterizes portfolios. Let's review:

- A portfolio is comprised of N securities, $N \geqslant 2$.
- The price per share/unit of security j is $S_{j}(t)$.
- The number of shares (fractional ok) we invest in security j is n_{j}.

Notation and setup
We have already discussed seen notation that parameterizes portfolios. Let's review:

- A portfolio is comprised of N securities, $N \geqslant 2$.
- The price per share/unit of security j is $S_{j}(t)$.
- The number of shares (fractional ok) we invest in security j is n_{j}.
- We are given an initial amount of capital, $V(0)>0$, which is the initial value of the portfolio.

Notation and setup
We have already discussed seen notation that parameterizes portfolios. Let's review:

- A portfolio is comprised of N securities, $N \geqslant 2$.
- The price per share/unit of security j is $S_{j}(t)$.
- The number of shares (fractional ok) we invest in security j is n_{j}.
- We are given an initial amount of capital, $V(0)>0$, which is the initial value of the portfolio.
- Hence, the relative amount of money we invest in security j is given by the weight $w_{j}=\frac{n_{j} S_{j}(0)}{V(0)}$.

Notation and setup
We have already discussed seen notation that parameterizes portfolios. Let's review:

- A portfolio is comprised of N securities, $N \geqslant 2$.
- The price per share/unit of security j is $S_{j}(t)$.
- The number of shares (fractional ok) we invest in security j is n_{j}.
- We are given an initial amount of capital, $V(0)>0$, which is the initial value of the portfolio.
- Hence, the relative amount of money we invest in security j is given by the weight $w_{j}=\frac{n_{j} S_{j}(0)}{V(0)}$.
We'll use vector versions of all these:
- $\boldsymbol{S}(t)$: the asset/security prices
- \boldsymbol{n} : the trading strategy
- w: the portfolio weights

We have already discussed seen notation that parameterizes portfolios. Let's review:

- A portfolio is comprised of N securities, $N \geqslant 2$.
- The price per share/unit of security j is $S_{j}(t)$.
- The number of shares (fractional ok) we invest in security j is n_{j}.
- We are given an initial amount of capital, $V(0)>0$, which is the initial value of the portfolio.
- Hence, the relative amount of money we invest in security j is given by the weight $w_{j}=\frac{n_{j} S_{j}(0)}{V(0)}$.
We'll use vector versions of all these:
- $\boldsymbol{S}(t)$: the asset/security prices
- \boldsymbol{n} : the trading strategy
- w : the portfolio weights

Our eventual goal will be to consider the return rate R_{P} of the portfolio over the time interval $[0, T]$:

Portfolio weights

In general we allow short selling, which corresponds to allowing negative weights/shares in the portfolio.

Example

Suppose we have a 3-security portfolio with initial value $\$ 1000$, where my 3 securities are:

- Security 1: Microsoft stock, $S_{1}(0)=\$ 100$
- Security 2: Coca-cola stock, $S_{2}(0)=\$ 50$
- Security 3: Ford Motor Company stock, $S_{3}(0)=\$ 150$

Suppose I form a portfolio with weights $\boldsymbol{w}=(0.5,-0.3,0.8)^{T}$.

Portfolio weights

In general we allow short selling, which corresponds to allowing negative weights/shares in the portfolio.

Example

Suppose we have a 3-security portfolio with initial value $\$ 1000$, where my 3 securities are:

- Security 1: Microsoft stock, $S_{1}(0)=\$ 100$
- Security 2: Coca-cola stock, $S_{2}(0)=\$ 50$
- Security 3: Ford Motor Company stock, $S_{3}(0)=\$ 150$

Suppose I form a portfolio with weights $\boldsymbol{w}=(0.5,-0.3,0.8)^{T}$.
Using $w_{1} V(0)=\$ 500$ in capital, this portfolio holds $n_{1}=\frac{w_{1} V(0)}{S_{1}(0)}=5$ shares of Microsoft.

In general we allow short selling, which corresponds to allowing negative weights/shares in the portfolio.

Example

Suppose we have a 3 -security portfolio with initial value $\$ 1000$, where my 3 securities are:

- Security 1: Microsoft stock, $S_{1}(0)=\$ 100$
- Security 2: Coca-cola stock, $S_{2}(0)=\$ 50$
- Security 3: Ford Motor Company stock, $S_{3}(0)=\$ 150$

Suppose I form a portfolio with weights $\boldsymbol{w}=(0.5,-0.3,0.8)^{T}$.
This portfolio holds $n_{2}=\frac{w_{2} V(0)}{S_{2}(0)}=-6$ shares of Coca-cola.
This means that we borrow 6 shares of Coca-cola from person A (like a "loan").
Putatively, we sell these shares back to the market (immediately) to generate $6 S_{2}(0)=\$ 300$ in captial.

At time $t=T$ in the future, we need to repurchase + return these shares to person A: to expect a profit we hope that $S_{2}(T)<S_{2}(0)$.

Portfolio weights

In general we allow short selling, which corresponds to allowing negative weights/shares in the portfolio.

Example

Suppose we have a 3-security portfolio with initial value $\$ 1000$, where my 3 securities are:

- Security 1: Microsoft stock, $S_{1}(0)=\$ 100$
- Security 2: Coca-cola stock, $S_{2}(0)=\$ 50$
- Security 3: Ford Motor Company stock, $S_{3}(0)=\$ 150$

Suppose I form a portfolio with weights $\boldsymbol{w}=(0.5,-0.3,0.8)^{T}$.
This portfolio holds $\frac{w_{3} V(0)}{S_{3}(0)}=\frac{16}{3}$ shares of Ford using $\$ 800$ in capital.
This capital is comprised of $\$ 500$ leftover from initial capital plus $\$ 300$ in capital raised by shorting security 2.

This portfolio is leveraged. (We have an outstanding debt in Coca-cola stock required to form the portfolio.)

Return rates

We are eventually interested in the return rate $R_{P}(T)$ of the portfolio. It is notationally useful to rewrite things in terms of return rates for each individual security:

$$
\begin{array}{cl}
R_{i}(t):=\frac{S_{i}(t)-S_{i}(0)}{S_{i}(0)}, & R(t)=\left(R_{1}(t), R_{2}(t), \ldots, R_{N}(t)\right)^{T} . \\
R(t) \text { vs. } R_{p}(t)
\end{array}
$$

Return rates

L07-S09
We are eventually interested in the return rate $R_{P}(T)$ of the portfolio. It is notationally useful to rewrite things in terms of return rates for each individual security:

$$
R_{i}(t):=\frac{S_{i}(t)-S_{i}(0)}{S_{i}(0)}, \quad \quad \boldsymbol{R}(t)=\left(R_{1}(t), R_{2}(t), \ldots, R_{N}(t)\right)^{T}
$$

This definition implies that the full portfolio's return can be written as:

$$
\begin{aligned}
R_{P}(T)=\frac{V(T)-V(0)}{V(0)} & =\frac{\langle\boldsymbol{S}(T), \boldsymbol{n}\rangle-V(0)}{V(0)} \\
& =\frac{\langle\boldsymbol{S}(T), \boldsymbol{n}\rangle-\langle\boldsymbol{S}(0), \boldsymbol{n}\rangle}{V(0)} \\
& =\frac{\langle\boldsymbol{S}(T)-\boldsymbol{S}(0), \boldsymbol{n}\rangle}{V(0)} \\
& =\sum_{j=1}^{N} n_{i} \frac{S_{i}(T)-S_{i}(0)}{V(0)} \\
& =\sum_{j=1}^{N} \frac{n_{i} S_{i}(0)}{V(0)} \frac{S_{i}(T)-S_{i}(0)}{S_{i}(0)} \\
& =\sum_{j=1}^{N} w_{i} R_{i}(T)=\langle\boldsymbol{R}(T), \boldsymbol{w}\rangle
\end{aligned}
$$

We are interested in the return rate $R_{P}(T)$ of the portfolio.

$$
R_{P}=\langle\boldsymbol{R}, \boldsymbol{w}\rangle, \quad \quad R_{i}(t):=\frac{S_{i}(t)-S_{i}(0)}{S_{i}(0)} .
$$

Return rates are dimensionless quantities, and can be represented as a percentage.
Thus, it's easy to compare a portfolio's return rate to, e.g., an alternative risk-free interest rate.

If statistics for $S_{i}(T)$ are given, one should translate them into statistics for $R_{i}(T)$.

We are interested in the return rate $R_{P}(T)$ of the portfolio.

$$
R_{P}=\langle\boldsymbol{R}, \boldsymbol{w}\rangle, \quad R_{i}(t):=\frac{S_{i}(t)-S_{i}(0)}{S_{i}(0)} .
$$

Return rates are dimensionless quantities, and can be represented as a percentage.
Thus, it's easy to compare a portfolio's return rate to, e.g., an alternative risk-free interest rate.

If statistics for $S_{i}(T)$ are given, one should translate them into statistics for $R_{i}(T)$.
Under the Markowitz model, we focus on the expected return rate and variance (squared risk) of the return rate:

$$
\begin{aligned}
\text { Expected return rate } & =" \mu_{P} " \\
\text { Risk } & =" \sigma_{P} "=\sqrt{\operatorname{Var} R_{P}}{ }^{\bullet}
\end{aligned}
$$

We will engineer the portfolio weights \boldsymbol{w} to optimize these statistics.
With return rates we need not be concerned with the actual value of $V(0)$.

We are interested in the return rate $R_{P}(T)$ of the portfolio.

$$
R_{P}=\langle\boldsymbol{R}, \boldsymbol{w}\rangle, \quad \quad R_{i}(t):=\frac{S_{i}(t)-S_{i}(0)}{S_{i}(0)}
$$

Return rates are dimensionless quantities, and can be represented as a percentage.
Thus, it's easy to compare a portfolio's return rate to, e.g., an alternative risk-free interest rate.

If statistics for $S_{i}(T)$ are given, one should translate them into statistics for $R_{i}(T)$.
Under the Markowitz model, we focus on the expected return rate and variance (squared risk) of the return rate:

$$
\begin{aligned}
\text { Expected return rate } & =" \mu_{P} "=\mathbb{E} R_{P}, \\
\text { Risk } & =" \sigma_{P} "=\sqrt{\operatorname{Var} R_{P}} "
\end{aligned}
$$

We will engineer the portfolio weights \boldsymbol{w} to optimize these statistics.
With return rates we need not be concerned with the actual value of $V(0)$.
A risk-optimal Markowitz portfolio will have the smallest σ_{P} for a fixed μ_{P}.

Portfolio optimization

Here is a core problem we will consider: Given

- time-0 asset prices and capital $V(0)$
- time- T distribution of asset prices/return rates
- a target reward (mean time- T portfolio value)
determine a portfolio weight vector that minimizes squared risk.

Portfolio optimization

Here is a core problem we will consider: Given

- time-0 asset prices and capital $V(0)$
- time- T distribution of asset prices/return rates
- a target reward (mean time- T portfolio value)
determine a portfolio weight vector that minimizes squared risk.
In return rates and with math: given statistics about $R_{i}(T)$ (possibly translated from those of $S_{i}(T)$) and a target expected return rate μ_{P}, compute \boldsymbol{w} satisfying,

$$
\begin{aligned}
& \min _{\boldsymbol{w}} \sigma_{P}^{2} \text { subject to }\langle\boldsymbol{w}, \mathbf{1}\rangle=1 \text {, and } \\
&\langle\boldsymbol{w}, \boldsymbol{\mu}\rangle=\mu_{P} . \\
& \mathbb{E}_{p}=\mathbb{E}\langle B, \mu)=\mu_{p}
\end{aligned}
$$

Portfolio optimization

Here is a core problem we will consider: Given

- time-0 asset prices and capital $V(0)$
- time- T distribution of asset prices/return rates
- a target reward (mean time- T portfolio value)
determine a portfolio weight vector that minimizes squared risk.
In return rates and with math: given statistics about $R_{i}(T)$ (possibly translated from those of $S_{i}(T)$) and a target expected return rate μ_{P}, compute \boldsymbol{w} satisfying,

$$
\begin{aligned}
\min _{\boldsymbol{w}} \sigma_{P}^{2} \text { subject to }\langle\boldsymbol{w}, \mathbf{1}\rangle & =1, \text { and } \\
\langle\boldsymbol{w}, \boldsymbol{\mu}\rangle & =\mu_{P} .
\end{aligned}
$$

We can make this somewhat more transparent by realizing that σ^{2} is a quadratic form of \boldsymbol{w} :

$$
\mu=\left(\mathbb{E} R_{1}, \mathbb{E} R_{2} \ldots \mathbb{E} R_{N}\right)^{\top}
$$

where

$$
\boldsymbol{A}=\operatorname{Cov} \boldsymbol{R} .=\mathbb{E}[\langle\underline{R}-\mu, \underline{w}\rangle]^{2}
$$

$$
=\mathbb{E}\left[\underline{w}^{\top}(\underline{R}-\mu)^{\top}(\underline{R}-\mu) \underline{w}\right]
$$

$$
\begin{aligned}
& R_{P}=\langle\boldsymbol{R}, \boldsymbol{w}\rangle \Longrightarrow \mu_{P}=\mathbb{E} R_{P}=\langle\boldsymbol{\mu}, \boldsymbol{w}\rangle, \\
& \sigma_{p}^{2}=\operatorname{Var} R_{P}=\mathbb{E}\left[R_{P}-\mu_{P}\right]^{2}=\boldsymbol{w}^{T} \boldsymbol{A} \boldsymbol{w}, \\
& =\mathbb{E}(\langle\mathbb{R}, \underline{w}\rangle-\langle\mu, \underline{w}\rangle)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\underline{w}^{+} \underbrace{}_{\operatorname{Cov}(\underline{R}) t^{n} A^{\prime \prime}} \underbrace{\left[(\underline{R}-\mu)^{\top}(\underline{R}-\mu)\right]} \underline{w} \\
& \mathbb{E}^{[}[\underbrace{\left.\langle\underline{R}-\mu, \underline{w}\rangle^{2}\right]} \\
& \underline{w}^{\top}(\underline{R}-\mu) \underbrace{\underline{w}^{\top}(\underline{R}-\underline{\mu})}_{(\underline{R}-\mu)^{\top} \underline{w}}
\end{aligned}
$$

Portfolio optimization, II

Hence, given $\boldsymbol{A}=\operatorname{Cov}(\boldsymbol{R})$, and $\boldsymbol{\mu}=\mathbb{E} \boldsymbol{R}$, then the optimization problem is now:

$$
\begin{aligned}
\min _{\boldsymbol{w}} \boldsymbol{w}^{T} \boldsymbol{A} \boldsymbol{w} \text { subject to } \begin{aligned}
\langle\boldsymbol{w}, \mathbf{1}\rangle & =1, \text { and } \\
\langle\boldsymbol{w}, \boldsymbol{\mu}\rangle & =\mu_{P}
\end{aligned}, .
\end{aligned}
$$

Portfolio optimization, II

Hence, given $\boldsymbol{A}=\operatorname{Cov}(\boldsymbol{R})$, and $\boldsymbol{\mu}=\mathbb{E} \boldsymbol{R}$, then the optimization problem is now:

$$
\begin{aligned}
\min _{\boldsymbol{w}} \boldsymbol{w}^{T} \boldsymbol{A} \boldsymbol{w} \text { subject to }\langle\boldsymbol{w}, \mathbf{1}\rangle & =1, \text { and } \\
\langle\boldsymbol{w}, \boldsymbol{\mu}\rangle & =\mu_{P} .
\end{aligned}
$$

In the 2-security model, there are only two weights with two linear constraints, so actually there is typically no optimization to be done.

Hence, given $\boldsymbol{A}=\operatorname{Cov}(\boldsymbol{R})$, and $\boldsymbol{\mu}=\mathbb{E} \boldsymbol{R}$, then the optimization problem is now:

$$
\begin{aligned}
\min _{\boldsymbol{w}} \boldsymbol{w}^{T} \boldsymbol{A} \boldsymbol{w} \text { subject to }\langle\boldsymbol{w}, \mathbf{1}\rangle & =1, \text { and } \\
\langle\boldsymbol{w}, \boldsymbol{\mu}\rangle & =\mu_{P} .
\end{aligned}
$$

In the 2-security model, there are only two weights with two linear constraints, so actually there is typically no optimization to be done.

To be consistent with our model assumptions, we'll typically assume that \boldsymbol{A} is positive-definite (no-arbitrage), and we'll allow \boldsymbol{w} to have negative components (short selling).

Example
Consider the problem of constructing a (Markowitz) 2-security portfolio. The individual securities have expected return rates and covariance given by,

$$
\mu<\mathbb{E} \boldsymbol{R}(T)=\binom{2}{6}, \quad \operatorname{Cov} \boldsymbol{R}(T)=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)
$$

For given μ_{P}, compute the optimal-risk portfolio.

$$
\begin{align*}
& \text { Constraint: }\langle\underline{w}, \underline{I}\rangle=1 \rightarrow w_{1}+w_{2}=1 \quad \text { (1) } \\
& \langle w, \mu\rangle=\mu_{p} \rightarrow 2 w_{1}+\sigma_{w_{2}}=\mu_{p} \tag{2}\\
& (2)-2(1) \rightarrow 4 w_{2}=\mu_{\beta}-2 \Rightarrow w_{2}=\frac{\mu_{p}}{4}-\frac{1}{2} \\
& w_{1}=1-w_{2}=1-\frac{\mu_{p}}{4}+\frac{1}{2} \\
& =\frac{3}{2}-\mu_{P / 4}
\end{align*}
$$

$$
\underline{w}=\left(\begin{array}{cc}
3 / 2 & -\mu_{p} / 4 \\
\mu_{p} / 4 & -1 / 2
\end{array}\right)
$$

An example optimization

Example
Consider the problem of constructing a (Markowitz) 2-security portfolio. The individual securities have expected return rates and covariance given by,

$$
\mathbb{E} \boldsymbol{R}(T)=\binom{2}{6}, \quad \operatorname{Cov} \boldsymbol{R}(T)=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)
$$

For given μ_{P}, compute the optimal-risk portfolio.
What is the squared risk corresponding to this optimal portfolio?

$$
\begin{aligned}
& \sigma_{p}^{2}=\underline{w}^{+} \underline{A} \underline{w}, \underline{A}=\operatorname{Cov}(\underline{R}(T)) \\
& \underline{w}=\binom{3 / 2-\mu_{p} / 4}{\mu_{p} / 4-1 / 2}=\frac{1}{2}\binom{3}{-1}+\frac{\mu_{p}}{4}\binom{-1}{1}=\underline{V}_{0}+\mu_{p} V_{1} \\
& V_{0}=\frac{1}{2}\binom{?}{-1} \quad \underline{V}_{1}=\frac{1}{4}\binom{-1}{1}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{w}^{+} \underline{\underline{A}} \underline{w}=\left(\underline{v}_{0}+\mu_{p} \underline{v}_{1}\right)^{+} \underline{\underline{A}}\left(\underline{v}_{0}+\mu_{1} \underline{v}_{1}\right), \quad \underline{\underline{A}}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) \\
& =v_{0}^{\top} \underline{\underline{A}} v_{0}+2 \mu_{p} \underline{v}_{0}^{+} \underline{\underline{A}} v_{1}+\mu_{p}^{2} \underline{v}_{i}^{\top} \underline{\underline{A}} v_{1} \\
& A v_{1}=\frac{1}{4}\left(\begin{array}{cc}
2 & -1 \\
-12
\end{array}\right)\binom{-1}{1}=\frac{1}{4}\binom{-2-1}{1+2}=\frac{1}{4}\binom{-3}{3} \\
& v_{0}{ }_{0}^{+} v_{1}=\frac{1}{2}\left(\begin{array}{ll}
3 & -1
\end{array}\right) \frac{1}{4}\binom{-3}{3}=\frac{1}{8}(-9-3)=-3 / 2 \\
& \underline{v}_{1}^{*}{\underset{N}{2}}_{v_{1}}=\frac{1}{44}(-1 \quad 1)^{+}+\frac{1}{4}\binom{-8}{3}=\frac{1}{16}(6)=3 / 8 \\
& \underline{A}_{\underline{v_{0}}}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) \frac{1}{2}\binom{3}{-1}=\frac{1}{2}\left(\begin{array}{cc}
6 & +1 \\
-3 & -2
\end{array}\right)=\frac{1}{2}\binom{7}{-5} \\
& v_{0}^{+} A v_{0}=\frac{1}{2}\left(\begin{array}{ll}
3 & -1)^{\top} \frac{1}{2}\binom{x}{-5}=\frac{1}{4}(21+5) ~
\end{array}\right. \\
& =13 / 2 \\
& \partial_{p}^{2}=\underline{w}+A_{\underline{w}}=\frac{3}{8} \mu_{p}^{2}-3 \mu_{p}+13 / 2
\end{aligned}
$$

An example optimization

Example

Consider the problem of constructing a (Markowitz) 2-security portfolio. The individual securities have expected return rates and covariance given by,

$$
\mathbb{E} \boldsymbol{R}(T)=\binom{2}{6}, \quad \operatorname{Cov} \boldsymbol{R}(T)=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) .
$$

For given μ_{P}, compute the optimal-risk portfolio.
What is the squared risk corresponding to this optimal portfolio?
Compute the corresponding optimal risks for $\mu_{P}=3$, and for $\mu_{P}=5$.

$$
\begin{aligned}
\sigma_{p}^{2} & =3 / 8 \mu_{p}^{2}-3 \mu_{p}+13 / 2 \\
& =3 / 8\left(\mu_{p}^{2}-8 \mu_{p}\right)+13 / 2
\end{aligned}=3 / 8\left(\mu_{p}-4\right)^{2}-16 \cdot \frac{3}{8}+13 / 22
$$

$$
\begin{aligned}
& \left.\sigma_{p}^{2}\right|_{\mu_{p}=3}=\frac{3}{8}(-1)^{2}+1 / 2=1 / 2+3 / 8=7 / 8 \\
& \left.\sigma_{p}^{2}\right|_{\mu_{p}}=5=\frac{3}{8}(+1)^{2}+1 / 2=7 / 8 \\
& -\operatorname{var}_{\|} R_{p}<\operatorname{var} R_{i} \quad i=1,2 \quad\left(\operatorname{Var} R_{i}=2\right) \\
& \sigma_{p}^{2}
\end{aligned}
$$

- Investor wants a portfolio with $\mu p=3$. \Rightarrow investor should prefer $\mu_{p}=5$.
- $\mu_{p}=3 \rightarrow$ NOT ar efficient portfolio

For Markowitz 2-security portfolio optimization:

- We can formulate an optimization that minimizes risk at a given expected return rate.
- There is typically only one feasible portfolio, hence it's optimal.
- The resulting optimized risk can be much lower than the individual security risks.
- The optimal-risk portfolio is not necessarily efficient: there can be portfolios having the same risk but higher expected return!

Petters, Arlie O. and Xiaoying Dong (2016). An Introduction to Mathematical Finance with Applications: Understanding and Building Financial Intuition. Springer. ISBN: 978-1-4939-3783-7.

