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Our status in the course L06-502

We've discussed the basics of finance and investing — concepts of interest and present value.

A more advanced understanding of pricing and policies requires some math:
— linear algebra
— differential equations
— probability

These topics are prerequisites for this course!
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Events L06-S03

Probability is a language about potential outcomes; these potential outcomes are called

events.

A foundational concept is the event space, which is the set of all possible outcomes.
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Events L06-S03

Probability is a language about potential outcomes; these potential outcomes are called
events.

A foundational concept is the event space, which is the set of all possible outcomes.

Example

| roll a 6-sided fair die. The possible events are:

— Face 1 is on top

— Face 6 is on top

Note that the numbers 1 through 6 are not the events.
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Events L06-S03

Probability is a language about potential outcomes; these potential outcomes are called
events.

A foundational concept is the event space, which is the set of all possible outcomes.

Example

| roll a 6-sided fair die. The possible events are:

— Face 1 is on top

— Face 6 is on top

Note that the numbers 1 through 6 are not the events.

Another example: | play paper-rock-scissors, and I'm concerned with which object | play
(ignoring my opponent). The possible events are:

— | play paper
— | play scissors

— | play rock
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Random variables L06-5S04

We typically deal with numeric values assigned to events. These assignments are called

random variables.!

Typically, the assignment of events to numerical values is somewhat straightforward.

1 More abstractly, random variables are ‘“‘well-defined’ functions that map events to real nhumbers.
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Random variables L06-5S04

We typically deal with numeric values assigned to events. These assignments are called
random variables.

Typically, the assignment of events to numerical values is somewhat straightforward.

Example

| roll a 6-sided fair die. It's quite sensible for me to define a random variable X to denote
the label of the side that comes up:

Face 3 is on top — X =3
- - Y] RK_J
event Random variable assignment

The set of possible values of the random variable (here X)) is {1,2,3,4,5,6}.

1 More abstractly, random variables are ‘“‘well-defined’ functions that map events to real nhumbers.
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Random variables L06-5S04

We typically deal with numeric values assigned to events. These assignments are called
random variables.

Typically, the assignment of events to numerical values is somewhat straightforward.

Example

| roll a 6-sided fair die. It's quite sensible for me to define a random variable X to denote
the label of the side that comes up:

Face 3 is on top — X =3
- - Y] RK_J
event Random variable assignment

The set of possible values of the random variable (here X)) is {1,2,3,4,5,6}.
Second example: | play paper-rock-scissors. Here is one random variable definition:

I play paper — Y =1
I play scissors — Y = 2
I play rock — Y = 3.
But Z =4 — Y is a perfectly acceptable, alternative encoding of outcomes. Both Y and Z

are sensible random variables, and there is no reason to prefer one to another without
further context.

1 More abstractly, random variables are ‘“‘well-defined’ functions that map events to real nhumbers.
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Probability distributions L06-505

The final ingredient we require is a distribution on outcomes, that is a definition of
likelihood that certain events happen.

We call these likelihoods probabilities, and they are always non-negative numbers between
0 and 1, and the sum of probabilities over all outcomes is always 1.

The probability of an event is typically denoted P(event) or Pr(event).
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Probability distributions L06-505

The final ingredient we require is a distribution on outcomes, that is a definition of
likelihood that certain events happen.

We call these likelihoods probabilities, and they are always non-negative numbers between
0 and 1, and the sum of probabilities over all outcomes is always 1.

The probability of an event is typically denoted P(event) or Pr(event).

Example

| roll a 6-sided fair die, and assign the following distribution on outcomes:

. 1 , 1
P(Face 1 is on top) = U P(Face 6 is on top) = "
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Probability distributions L06-505

The final ingredient we require is a distribution on outcomes, that is a definition of
likelihood that certain events happen.

We call these likelihoods probabilities, and they are always non-negative numbers between
0 and 1, and the sum of probabilities over all outcomes is always 1.

The probability of an event is typically denoted P(event) or Pr(event).

Example

| roll a 6-sided fair die, and assign the following distribution on outcomes:
. 1 , 1
P(Face 1 is on top) = U P(Face 6 is on top) = "

Probabilities could be defined only on “coarser”’ events: | roll a 6-sided die (not necessarily
fair), which has the following distribution:

P(An even-number-labeled face is on top) =

Y

N | = N =

P(An odd-number-labeled face is on top) =

Note that none of this is directly related to random variables! These are purely properties
on the space of outcomes.
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Probability mass functions L06-506

The examples we've seen are examples where the random variable takes on a discrete (in
particular finite) number of values.

For such discrete random variables, a standard practice is to translate probabilities on
outcomes into probabilities on variable values:

px(z) =P (X =x).

px is called the (probability) mass function for X, and maps elements from the set of
values of X to the set of numbers [0, 1].
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Probability mass functions L06-506

The examples we've seen are examples where the random variable takes on a discrete (in
particular finite) number of values.

For such discrete random variables, a standard practice is to translate probabilities on
outcomes into probabilities on variable values:

px(z) =P (X ==z).

px is called the (probability) mass function for X, and maps elements from the set of
values of X to the set of numbers [0, 1].

In particular mass functions have some intuitive properties:
— px () = 0 implies that X = = happens with zero probability.
— The value of px (x) is a direct measure of how probable the outcome X = z is.
- 2..px(z) =1
- px(xz) =0

An example mass function for X

T T T
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Distribution functions L06-507

A less obviously useful function is the (cumulative) distribution function of X, defined as,

Fx(z):=P(X <z)= ) px(y).

YT
This measures the (cumulative) probability that X takes on values x or smaller.

This function is monotone non-decreasing, limiting to value 0 as x — —o0 and to value 1
as r — +00.

An example distribution function for X
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Statistics, | L06-S08

With an understanding of the likelihood of outcomes for a random variable X, we can
compute averages.

The fundamental operator in this sphere is the expectation operator I, acting on a random
quantity. This quantity can be an arbitrary well-defined function of a given random variable
X:

Eg(X) == ) g(x)px (x).

Intuitively: px (x) are convex weights, and hence [Eg(X) is a convex combination
(“average') of realizations of g.

of ’/ .
Wi Wy ot Uty vcf@AH n[ wrt [”; /J and

|
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Statistics, | L06-S08

With an understanding of the likelihood of outcomes for a random variable X, we can
compute averages.

The fundamental operator in this sphere is the expectation operator I, acting on a random
quantity. This quantity can be an arbitrary well-defined function of a given random variable
X:

Eg(X) == ) g(x)px (x).

Intuitively: px (x) are convex weights, and hence [Eg(X) is a convex combination
(“average') of realizations of g.

We will mostly be concerned with first- and second-order statistics, corresponding to
specific choices for g:

glx) = —> EX = ZCUPX () (The mean of X)

g(z) = (z —EX)? — E(X -EX)*>=)(r-EX)’px(z) (The variance of X)

The mean provides average behavior of X; the variance provides a (coarse) measure of the
“spread” of X.
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Statistics, | EL-FxT= ) 06-509

Some terminology and notation:

— If we choose g(z) = x™, then Eg(X) is typically called the nth (uncentered) moment
of X.

— If we choose g(x) = (x — [EX)™, then Eg(X) is typically called the nth centered
moment of X.

— The variance of a random variable is often denoted VarX := E(X — EX)? > 0.
— The standard deviation of X is defined as v/VarX.

A. Narayan (U. Utah — Math/SCI) Math 5760/6890: Review: Probability



Statistics, Il L06-S09

Some terminology and notation:

— If we choose g(z) = x™, then Eg(X) is typically called the nth (uncentered) moment
of X.

— If we choose g(x) = (x — [EX)™, then Eg(X) is typically called the nth centered
moment of X.

— The variance of a random variable is often denoted VarX := E(X — EX)? > 0.
— The standard deviation of X is defined as v/VarX.

There are some properties of these statistics that are reasonably straightforward to show:

— The expectation operator is linear: if X and Y are any two random variables, then
E (aX +bY) = aEX + bEY, a,be C

— The variance operator is invariant to deterministic shifts, and scales quadratically with

scaling: a W‘/W‘M(J Hy

Var(X + a) = VarX, Var(aX) = |a|*VarX.
— The variance of a random variable satisfies:

VarX = EX? — (EX)?.
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Continuous random variables L06-S10

Most of the story is the same if a random variable X is continuously distributed.

The main difference is that mass functions don’t exist/make sense anymore.
E.g., if X is uniformly distributed on [0, 1], then

P(X =a) =0, a € |0,1],

hence the mass function would be zero.
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Continuous random variables L06-S10

Most of the story is the same if a random variable X is continuously distributed.

The main difference is that mass functions don’t exist/make sense anymore.
E.g., if X is uniformly distributed on [0, 1], then

P(X =a) =0, a € |0,1],
hence the mass function would be zero.

We “fix" this problem by defining (probability) density functions: 1[\ Y ( X) ‘ Jﬂﬂf /'7%.
P(X € [a,b]) f fx(z a < b

These types of random variables also have distribution functions:

F (X)EP(X<:E)=Jm fxg,az/)d;/.
‘ oy
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Continuous random variables L06-S10

Most of the story is the same if a random variable X is continuously distributed.

The main difference is that mass functions don’t exist/make sense anymore.
E.g., if X is uniformly distributed on [0, 1], then

P(X =a) =0, a € |0,1],
hence the mass function would be zero.

We “fix" this problem by defining (probability) density functions:

IN
o

b
P(X € [a,b]) = f fx (x)dx, a

These types of random variables also have distribution functions:

Density functions are not quite as transparent as mass functions:
— The value fx () does not provide information about the probability that X = =.

— While SO_OOO fx(x)dx =1 and fx(x) = 0, the actual values of fx (z) can be arbitrarily
large numbers.
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Continuous random variable statistics L06-511

Statistics for continuous random variables is defined essentially the same as for the discrete
case.

To see this, we need only define expectation appropriately:

Bg(X) = f 7o) fx (@) dz

— 0

All the definitions and properties of statistics we've seen before are the same.
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Conditional probabilities L06-512

Conditional probabilities are ways of narrowing the set of events by specifying a condition.

Probabilities must also be renormalized appropriately. Given events A and B, then

_ P(ANB)

P(A|B) : P(B)

|.e., the probability of A conditioned on B is the probability of both A and B happening,
normalized by the probability that B happens.
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Conditional probabilities L06-512

Conditional probabilities are ways of narrowing the set of events by specifying a condition.

Probabilities must also be renormalized appropriately. Given events A and B, then

_ P(ANB)

P(A|B) : P(B)

|.e., the probability of A conditioned on B is the probability of both A and B happening,
normalized by the probability that B happens.

Example

| roll a 6-sided fair die.

, 1
P(Face 4 is on top) = a
P(Face 4 is on top and even)

P(Face 4 is on top | The top face is even) = :
P(The top face is even)
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Conditional expectations L06-513

Conditional probabilities are (actual) probabilities. E.g., consider a discrete RV X and an
event A:

px|a(z) = P(X =z | A) € [0,1]
Y pxjalz) =) P(X =) | A) = 2, P(X =2z (14) _ P(A)

P(A) P(a) -
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Conditional expectations L06-513

Conditional probabilities are (actual) probabilities. E.g., consider a discrete RV X and an
event A:

px|a(z) = P(X =z | A) € [0,1]
Y pxjalz) =) P(X =) | A) = 2, P(X =2 (14) _ P(A)

P(A) P(A)

Hence, one can define a conditional expectation operator:

E[g(X) | A] = Y 9(X)px|alz).

With this, one can define conditional means, variances, etc.
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Random vectors L06-S14

Everything we've discussed essentially generalizes appropriately to vector-valued random
variables:

X=(X1 Xo - X,) eR"

E.g., if X is discrete, then its mass function px is a function defined on n-dimensional
vectors:

px(z) = P(X ==x) = P((Xl =a1)[ (X2 =a2)( ][ )(Xn = wn))-
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Random vectors L06-S14

Everything we've discussed essentially generalizes appropriately to vector-valued random
variables:

X=(X1 Xo - X,) eR"

E.g., if X is discrete, then its mass function px is a function defined on n-dimensional
vectors:

px(z) = P(X ==x) = P((Xl =a1)[ (X2 =a2)( ][ )(Xn = a?n))-

Hence, the expectation operator is defined in exactly the same manner:

Eg(X) = ) g(=)px (z),

so that the (vector-valued) mean is well-defined:

EX = Zmpx(m) e R"™.
€T
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Covariances L06-S15

There is a hiccup when it comes to second-order statistics of random vectors: which
quadratic function should we take the expectation of?
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Covariances L06-S15

There is a hiccup when it comes to second-order statistics of random vectors: which
quadratic function should we take the expectation of?

“All of them” is the somewhat unsatsifying answer.

First, the moment of the product of centered versions of X; and X is the covariance of
Xi and in

COV(Xq;,Xj) =K [(Xz — EXz)(XJ — EXJ)] .
Second, if X € R", then

X1X1 X1X2 Xan
X2X1 X2X2 te XQXn

X.XT — . . . ERan,
XnX]_ s Xan

iIs a matrix containing every quadratic combination of the components of X.
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Covariances L06-S15

There is a hiccup when it comes to second-order statistics of random vectors: which
quadratic function should we take the expectation of?

“All of them” is the somewhat unsatsifying answer.

First, the moment of the product of centered versions of X; and X is the covariance of
Xi and in

COV(Xq;,Xj) =K [(Xz — EXz)(XJ — EXJ)] .
Second, if X € R", then

X1X1 X1X2 Xan
X2X1 X2X2 te XQXn

X.XT — . . . ERan,
XnX]_ e Xan

iIs a matrix containing every quadratic combination of the components of X.

With this setup, the covariance matrix of X the matrix of covariances between
components of X:

Cov(X) = E [(X _EX)(X — EX)T] .
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The covariance matrix L06-S16

Cov(X) == E [(X _EX)(X — EX)T] .

Some direct consequences:

1. Cov(X) is symmetric g A
2. Cov(X) is positive definite S?/VNJ&AVI/?Z&

3. For a deterministic a € R", Var{(a, X) = a’ Cov(X)a.

A= Co\/Q() )
oL /A—EX

wWiAw T Wl E[(X“/M) U('// )" v
= FE[M()("/) (y,/ﬁw]
“E[(w(x5)7] 20
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The covariance matrix L06-516

Cov(X) = E [(X _EX)(X — EX)T] .

Some direct consequences:
1. Cov(X) is symmetric
2. Cov(X) is positive definite
3. For a deterministic a € R™, Var{a, X) = a’ Cov(X)a.

Other properties:
The diagonal element (Cov(X)); ; equals VarX;.

The scaled off-diagonal entries are called (Pearson) correlation coefficients:

C X L8,
\/(VarX,L-) (VarX)
Values “close” to +1 indicate that X; and X; are “correlated"”.

Values “close” to —1 indicate that X; and X are “anti-correlated”.
A value of 0 indicates that X; and X; are “uncorrelated”.

Corr(X;, X;) =
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The covariance matrix L06-516

Cov(X) = E [(X _EX)(X — EX)T] .

Some direct consequences:

1. Cov(X) is symmetric

2. Cov(X) is positive definite

3. For a deterministic a € R™, Var{a, X) = a’ Cov(X)a.
Other properties:

The diagonal element (Cov(X)); ; equals VarX;.

The scaled off-diagonal entries are called (Pearson) correlation coefficients:

Cov (X)), 4

( OV( ))]a] = [_1’ 1]
\/(VarX,L-) (VarX;)
Values “close” to +1 indicate that X; and X; are “correlated"”.

Values “close” to —1 indicate that X; and X are “anti-correlated”.
A value of 0 indicates that X; and X; are “uncorrelated”.

Corr(X;, X;) =

Uncorrelated random variables are generally not independent: independence requires
P(XeS)()YeT)=P(XeS)P(Y eT)

for all sets S,T. If X and Y are independent they must be uncorrelated, but the reverse
need not be true.
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Parametric distributions L06-517

Some examples of “important” probability distributions are:
— Discrete random variables

Bernoulli
discrete uniform
Binomial
Poisson

vV v v Vv

>
— Continuous random variables

> Uniform

> Beta

> Gaussian

> Exponential

>

We'll discuss various canonical probability distributions throughout this course.
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Questions + comments L06-S18

Suppose X and Y share the same mean and variance. Does X =Y7?

\\/0 .' ><f \, Prpb//é
//lpryé //Z

f=—x
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Questions + comments L06-S18

Suppose X and Y share the same mean and variance, and Corr(X,Y)),. Does X =Y7?

({gf Q’(ﬂ(/%

{4
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Questions + comments L06-S18

Suppose X and Y are discrete RV's with the same mass function, i.e., px(m) = py (m)
for all m. Does X =Y7?

Vo
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Questions + comments L06-S18

Let X be a random variable. Does X have either a mass function or a density function?

\/, ((M(j hef o C/’B*ﬁbufyh)

Syt Sum < ditee ged & confimras RV
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Questions + comments L06-S18

Suppose EX = p and Var(X) = 02. Thenis X € [ — o, i + o] say with some predictable
probability?

Vit ﬂ%//y.
Bur, s’ oL He ba iy s ok,
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Questions + comments L06-S18

Suppose we pick two stocks with the same price today. Tomorrow, we model these share
prices as random variables X and Y, with EX = [EY and VarX < VarY.

Would you advise an investor to invest in stock X instead of stock Y7
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References | L06-S19
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