
L05-S01

Math 5760/6890: Introduction to Mathematical Finance

Review: linear algebra and differential equations

Akil Narayan1

1Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute
University of Utah

September 5, 2023

A. Narayan (U. Utah – Math/SCI) Math 5760/6890: Review: LA and DE’s

 



L05-S02
Our status in the course

We’ve discussed the basics of finance and investing – concepts of interest and present value.

A more advanced understanding of pricing and policies requires some math:
– linear algebra
– differential equations
– probability

These topics are prerequisites for this course!
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L05-S03
Vectors and matrices, I

Let m,n P . (m ° n, m “ n, m † n are allowed.)

We’ll typically use lowercase boldface letters, e.g., v, to denote vectors, elements of n.
Vectors can be described by their components:

v “

¨

˚̊
˚̋

v1
v2
...
vn

˛

‹‹‹‚“
nÿ

j“1

vjej P n, ej “

¨

˚̊
˚̊
˚̊
˚̋

...
0
1
0
...

˛

‹‹‹‹‹‹‹‚

.

I.e., the components vj are the coordinates of v in an expansion of the canonical vectors
tejunj“1.

We’ll use uppercase boldface letters, e.g., A, to denote matrices, elements of mˆn that
are also described by their components:

A “

¨

˚̊
˚̋

a11 a12 ¨ ¨ ¨ a1n
a21 a22 ¨ ¨ ¨ a2n
...

. . .
...

am1 am2 ¨ ¨ ¨ amn

˛

‹‹‹‚P mˆn.

Matrices are linear maps (functions) taking n to m.
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L05-S04
Vectors and matrices, II

It is sometimes useful to consider vectors as specializations of matrices:
– If n “ 1 and m ° 1, then A P mˆ1 is a column vector
– If m “ 1 and n ° 1, then A P 1ˆn is a row vector

When considering vectors as specializations of matrices, we will assume that vectors are
column vectors, unless otherwise indicated.
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L05-S05
Portfolios

Example (Portfolio parameterization)
Suppose we have some initial amount of money, V p0q, that we wish to invest.

Suppose there are N P securities, which are financial products of which we can purchase
a quantity.

The price (per unit) of security i at time t is given by Siptq.

The number of units we purchase of security i is ni (can be non-integer).

The weight of our portfolio for the ith security is wi “ niSip0q{V p0q, which is the relative
amount of worth we invest in security i.

We represent all these things as vectors:

Sptq “

¨

˚̋
S1ptq

...
SN ptq

˛

‹‚P N , n “

¨

˚̋
n1

...
nN

˛

‹‚P N , w “

¨

˚̋
w1

...
wN

˛

‹‚P N .

The vector n is the “trading strategy”, and w is the (portfolio) “weight” vector.
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L05-S06
Inner products

The space of vectors n has Euclidean structure. One source of this structure comes from
the notion of inner products: With v,w P n, then the inner product of these vectors is

xv,wy “
nÿ

j“1

vjwj .

The inner product allows us to define lengths of vectors:

}v} :“
b

xv,vy • 0,

with }v} “ 0 iff v “ 0.

From the definition, we observe that the inner product satisfies some key properties:
– Symmetry : xv,wy “ xw,vy.
– Bilinearity : xau ` bv,wy “ a xu,wy ` b xv,wy for any a, b P .
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L05-S07
Angles

A useful concept that inner products provide is a measure of angles between vectors:

✓ :“ =pv,wq, cos ✓ “ xv,wy
}v}}w} , v,w ‰ 0.

In particular this allows us to define orthogonal vectors: v is orthogonal to w if xv,wy “ 0.

Why should xv,wy
}v}}w} be a number between -1 and 1? Recall:

B
v,

w

}w}

F
“ “Amount” of v pointing in the direction of w.

B
v,

w

}w}

F
w “ The projection of v onto w

If the first expression is the “amount” of v pointing in a direction, then this “amount”
shouldn’t be larger than }v}:

ˇ̌
ˇ̌
B
v,

w

}w}

Fˇ̌
ˇ̌ § }v} ùñ |xv,wy| § }v}}w}

This is the Cauchy-Schwarz inequality. (Equality iff v is a scalar multiple of w.)

Because of Cauchy-Schwarz, the quantity xv,wy
}v}}w} P r´1, 1s, so that it can be the cosine of

some angle.
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L05-S08
Portfolios, redux

Example
With a portfolio weight vector w, the trading strategy n, the per-unit security price Sptq,
and the initial capital V p0q, we have the following relations:

xw,1y “
Nÿ

j“1

wj “ 1.

xn,Sp0qy “
Nÿ

j“1

njSjp0q “ V p0q

There is no restriction on the values of the weights wi: they can be negative or greater
than 1.

– wi ° 0 corresponds to purchasing units, with the intention to sell later (a long
position)

– wi † 0 corresponds to borrowing units and selling them now, with the intention to
buy them back later (“short selling”, a short position)

If there is no short selling, then wi • 0, and hence 0 § wi § 1 for all i.
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L05-S09
Matrix multiplication

A core concept we’ll need involves algebra on matrices, specifically matrix multiplication:

Given matrices A P mˆ` and B P `ˆn, then the product AB is given by,

AB P mˆn, pABqj,k “
ÿ̀

q“1

Aj,qBq,k

I.e., pABqj,k is the inner product between the jth row of A and the kth row of B.

Matrix multiplication is defined for matrices of conforming sizes, i.e., when the inner
dimensions match.

Matrix multiplication is in general not commutative.

Given A P mˆn, the transpose of A is the matrix AT P nˆm, formed by reflecting the
entries of A across its main diagonal.

An inner product can be viewed as matrix multiplication:

vTw “ xv,wy , v,w P n.

(Recall that when interpreting vectors v P n as matrices, we consider them as column
vectors v P nˆ1).
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L05-S10
Outer products

An outer product is another matrix multiplication between vectors, but this time when the
inner dimension is 1:

v “ pv1, . . . , vnqT P n, w “ pw1, . . . , wnqT P n.

vwT “
¨

˝ w1v w2v ¨ ¨ ¨ wnv

˛

‚“

¨

˚̊
˚̋

v1wT

v2wT

...
vnwT

˛

‹‹‹‚P nˆn
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L05-S11
Linear independence, span, and basis, I

Let v1, . . . ,vk P n be any collection of vectors, and let V P nˆk be the matrix whose
columns are these vectors:

V “
¨

˝ v1 v2 ¨ ¨ ¨ vk

˛

‚

These vectors are linearly dependent if there exists a(ny) vector c P k, c ‰ 0, such that,

V c “ c1v1 ` . . . ` ckvk “ 0.

Vectors that are not linearly dependent are linearly independent.

Vectors that are linearly dependent have a nontrivial linear relationship.
(If 0 is in the collection of vectors, the definition above implies they are linearly dependent.)
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L05-S12
Linear independence, span, and basis, II

Let v1, . . . ,vk P n be any collection of vectors, and let V P nˆk be the matrix whose
columns are these vectors:

V “
¨

˝ v1 v2 ¨ ¨ ¨ vk

˛

‚

The span of these vectors is the collection of all linear combinations of these vectors:

spantv1, . . . ,vku :“
!
V c

ˇ̌
c P k

)
.

The span of vectors is a linear/vector subspace: it is a collection of vectors closed under
addition and scalar multiplication.
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L05-S13
Linear independence, span, and basis, III

Let v1, . . . ,vk P n be any collection of vectors, and let V P nˆk be the matrix whose
columns are these vectors:

V “
¨

˝ v1 v2 ¨ ¨ ¨ vk

˛

‚

Let S be some given vector subspace.

The vectors form a basis for S if the span of these vectors is S and they are linearly
independent.

In math: these vectors are a basis for S if

@ w P S, D ! c P k such that V c “ w.

(If c did not exist, the vectors wouldn’t span S. If c weren’t unique, then there would exist
a nontrivial solution to V d “ 0.)

A basis for S is not unique, but the size of a basis for S is unique.

This unique size of a basis for S is its dimension, dimS.

If S contains m-dimensional vectors, then dimS § m.
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L05-S14
Linear equations

One particularly important application of linear algebra is as the theoretical and practical
underpinning for solving linear equations for an unknown vector x P n:

Ax “ b, A “
¨

˝ a1 a2 ¨ ¨ ¨ an

˛

‚P mˆn, b P m.

To characterize solutions to such linear equations, consider the range or “column space” of
A, which is a subspace:

rangepAq :“ spanta1, . . . ,anu ùñ n • dim rangepAq

We can make very strong characterizations about solutions to linear systems:
1. If b R rangepAq, then there is no solution x.
2. If b P rangepAq and n ° dim rangepAq then there are infinitely many solutions x, and

the collection of these solutions form an affine space1 of dimension
pn ´ dim rangepAqq.

3. If b P rangepAq and n “ dim rangepAq, then there exists exactly one solution x.
NB: Situations 1 and 2 can happen for any relationship between n and m. Situation 3 can
happen only if m • n.
The canonical algorithm to compute solutions to linear equations is Gaussian elimination.

1An affine space is a subspace shifted by a fixed vector.
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L05-S15
Portfolio paramerterizations

Example
Recall that portfolio weights satisfy,

xw,1y “ 1.

This is equivalent to:

Aw “ b, A “ `
1 1 ¨ ¨ ¨ 1

˘ P 1ˆN , b “ 1 P 1.

In this case, the dimension of the range is dim rangepAq “ 1 (and clearly b P rangepAq).

Hence, there are infinitely many valid portfolio weight vectors w, and they form an affine
space of dimension N ´ dim rangepAq “ N ´ 1.
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L05-S16
The matrix inverse

When m “ n, consider the “square” linear system,

Ax “ b, A, b given

There are some equivalent statements about a unique solution:
– There is a unique solution x.
– The rank of A, that is dim rangepAq, has maximal value n.
– The determinant of A does not vanish: detA ‰ 0.
– The matrix A has an inverse A´1, satisfying AA´1 “ A´1A “ I.

When any (hence all) of the above statements is true, then

x “ A´1b

is the unique solution.
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L05-S17
Orthogonal matrices

Matrix inverses are generally “hard” to compute (analytically or numerically).

There is one class of matrices for which matrix inversion is rather simple:

A matrix A P nˆn is orthogonal if its columns are (pairwise) orthgonal and unit norm:

A “
¨

˝ a1 a2 ¨ ¨ ¨ an

˛

‚, xaj ,aky “ �j,k :“
"

1, j “ k
0, j ‰ k

A straightforward computation using matrix multiplication reveals:

A orthogonal ùñ ATA “ I ùñ A´1 “ AT .

Hence, orthogonality is a particularly useful practical property. (And A orthogonal implies
A´1 “ AT is also orthogonal.)

Another useful property of orthogonal matrices: they correspond to isometric maps.

In particular, if A is orthogonal:

xAv,Awy “ vTATAw “ vT Iw “ vTw “ xv,wy .

I.e., the transformation v fiÑ Av preserves angles and lengths.
Orthogonal matrices are simple rotations and/or reflections.
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L05-S18
Eigenvalues

For square matrices A P nˆn, an important concept is that of the spectrum of A.

If there exists any (possibly complex-valued) scaled �, and any non-zero vector v (possibly
complex-valued) such that,

Av “ �v,

then
– � is called an eigenvalue of A
– v is called an eigenvector of A.

Fixing �, note that the condition for being an eigenvector is invariant under addition of
vectors and scalar multiplication: The set of eigenvectors associated to an eigenvalue � is a
subspace.

Eigenvalues � satisfy the characteristic equation:

detpA ´ �Iq “ 0,

so that eigenvalues are roots of a degree-n polynomial.
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L05-S19
Matrix diagonalization

Every n ˆ n matrix has exactly n eigenvalues (possibly repeated according to roots of the
characteristic equation).

For each eigenvalue (counting multiplicity), there may be an eigenvector that is linearly
independent from all others.

Matrices for which each eigenvalue has a corresponding linearly independent eigenvector
are called diagonalizable.

If A is diagonalizable, then the following decomposition holds,

A “ V ⇤V ´1, ⇤ “ diagp�1, . . . ,�nq, V “
¨

˝ v1 v2 ¨ ¨ ¨ vn

˛

‚,

where p�j ,vjq are eigenvalue-eigenvector pairs for j “ 1, . . . , n.

A particularly nice property about diagonalizable matrices is that the eigenvectors span n

(possibly using complex scalar multiplication).

The upshot: if A is diagonalizable, then there is a linear transformation (defined by V )
such that multiplication by A corresponds to a simple diagonal scaling:

w “ Ax
y“V ´1x,z“V ´1w››››››››››››››Ñ z “ ⇤y.

Hence diagonalizations are very useful.
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L05-S20
Orthogonal diagonalization

Diagonalizable matrices are diagonal under some transformation defined by V ´1. But
V ´1 can be painful to compute.

Some matrices are orthogonally diagonalizable, meaning that V is an orthogonal matrix,
and hence V ´1 is “easy” to compute.

One of the major results of linear algebra is the following identification of one class of
orthogonal matrices:

Theorem (Spectral theorem for symmetric matrices)
Assume A P nˆn satisfies A “ AT .
(Such matrices are called symmetric.)

Then:
– All eigenvalues of A are real-valued.
– A is orthogonally diagonalizable.

(The eigenvectors can be chosen as orthogonal vectors.)

I.e.,

A “ AT ùñ A “ V ⇤V T .
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L05-S21
Quadratic forms

Since symmetric matrices have real-valued eigenvalues, then one can make sensible
definitions about where the eigenvalues lie on .

In particular, the following are well-defined for �j the eigenvalues of an n ˆ n symmetric
matrix:

– �min “ minj“1,...,n �j

– �max “ maxj“1,...,n �j

Equality above occurs iff x is a multiple of the eigenvalue corresponding to the
minimum/maximum eigenvalue of A.

The spectral theorem also implies the following extremely useful inequality: if A is
symmetric, then,

�min}x}2 § xTAx § �max}x}2.

(The function fpxq “ xTAx is an example of a quadratic form.)
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L05-S22
Symmetric + definite matrices

Two final definitions are sub-classes of symmetric matrices:
– If A is symmetric and all its eigenvalues are strictly positive, then A is (symmetric)

positive definite.
– If A is symmetric and all its eigenvalues are non-negative, then A is (symmetric)

positive semidefinite.
One can equivalently define these matrix classes through their quadratic forms.

In particular, A is symmetric positive semi-definite iff xTAx • 0 for all x P n.
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L05-S23
Linear differential equations

Differential equations govern how quantities change in time.

One class of general ordinary differential equations (DE) governing the unknown function
yptq where t is a scalar (i.e., time) is,

F
`
t, y, y1, y2, y3, . . .

˘ “ 0, yp0q “ y0, y1p0q “ y1
0 ¨ ¨ ¨ .

This is an initial value problem. The maximum derivative appearing in F is called the
order of the equation.

Understanding the theory (solvability, well-posedness) of these problems is generally quite
difficult, but linear equations are quite flexible for modeling and are rather well-understood.

Linear DE’s are those where y, y1, etc., collectively appear in F in a linear fashion.
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L05-S24
Linear first-order equations

The initial value problem,

y1ptq “ 3y, yp0q “ 4,

is, with some experience, rather transparent to solve:

yptq “ 4e3t.

The general solution of a first-order “constant-coefficient” linear equation can be
determined in a similar fashion:

y1 ` �y “ fptq, yp0q “ y0,

has the unique solution

yptq “ y0e
´�t ` e´�t

ª t

0
fpsqe�sds
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L05-S25
Continuous annuities

Example
Consider an annuity (say a loan) with interest continuously compounded at (annual) rate r.

Suppose we also consider a repayment cycle that is continuous instead of periodic. I.e., we
pay money at a (continuous) rate of P dollars (per year).

The equation modeling the time-t present value V ptq of this annuity is given by,

V 1ptq “ rV ptq ´ P, V p0q “ V0,

where V0 is the loan principal (annuity present value at time 0).

The solution to this equation is given by,

V ptq “ V0e
rt ´ ert

ª t

0
Pe´rsds

“ V0e
rt ` P

r

“
1 ´ ert

‰

Note in particular that this implies V0 † P {r is required in order for the loan to
eventually be repaid.
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L05-S26
Systems of linear equations

The rather interesting part of this comes with systems of linear constant-coefficient
differential equations:

y1ptq “ Ay, yp0q “ y0,

where yptq “ py1ptq, y2ptq, . . . , ynptqqT .

If A is diagonalizable, A “ V ⇤V ´1, then this system is the same as

z1ptq “ ⇤z, zp0q “ V ´1y0,

where zptq :“ V ´1yptq, and easily solvable:

zptq “ e⇤tV ´1y0 ùñ yptq “ V e⇤tV ´1y0.

Above, e⇤t “ pe�1t, e�2t, . . . , e�ntqT .

(If A is orthogonally diagonalizable, this is computationally even easier.)
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