Math 5760/6890: Introduction to Mathematical Finance
See Petters and Dong 2016, Sections 2.6-2.9

Akil Narayan ${ }^{1}$
${ }^{1}$ Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute University of Utah

August 29, 2023

We've seen that interest allows an investor to make a profit simply by depositing money in an account and waiting.

Of course, there could be alternative investments that guarantee growth of a principal.

We've seen that interest allows an investor to make a profit simply by depositing money in an account and waiting.

Of course, there could be alternative investments that guarantee growth of a principal.
In either case, any investment opportunity for the investor should be evaluated by weighing the investment payoff against the alternative investment payoff.

The present value of an investment is today's value of future investment payoffs, factoring in an interest "discount".

Present value, cont.

Example

Suppose you are offered to invest in a company (e.g., purchase a stock share), and from your investment you are promised the following payments due to growth of the company:

- End of year 1: \$50
- End of year 2: \$75
- End of year 3: \$100

In order to determine today's value of this investment opportunity, suppose an alternative opportunity ensures an annual growth rate $r=10 \%$.

Present value, cont.

Example

Suppose you are offered to invest in a company (e.g., purchase a stock share), and from your investment you are promised the following payments due to growth of the company:

- End of year 1: \$50
- End of year 2: \$75
- End of year 3: \$100

In order to determine today's value of this investment opportunity, suppose an alternative opportunity ensures an annual growth rate $r=10 \%$.

Then the present value of this opportunity is,

$$
P V=\frac{50}{1+r}+\frac{75}{(1+r)^{2}}+\frac{100}{(1+r)^{3}} \approx \$ 182.57
$$

(If the alternative is due to interest, compounding should be taken into consideration.)
Terminology: the rate r (of an alternative investment) is called a "required return rate".

Net present value
One can compute the present value of an investment opportunity if fixed payoffs are assured and an alternative opportunity rate is identified.

To decide if this is a good opportunity, we need information about the price/capital required in the initial payment.

Net present value

One can compute the present value of an investment opportunity if fixed payoffs are assured and an alternative opportunity rate is identified.

To decide if this is a good opportunity, we need information about the price/capital required in the initial payment.

Example

The opportunity in the previous example had a present value of $\$ 182.57$. If the price of this investment or initial capital requirement is $\$ 150$, then the net present value of this opportunity is defined as,

$$
N P V=\$ 182.57-\$ 150 .
$$

If $N P V \geqslant 0$, this opportunity is attractive. It generally is not attractive if $N P V<0$.

Internal return rate

The return rate from an investment is computed using a similar idea.

Example

The annual return rate for the investment in the previous examples is the rate r at which the r-discounted payoffs match the initial price:

$$
150=\frac{50}{1+r}+\frac{75}{(1+r)^{2}}+\frac{100}{(1+r)^{3}}
$$

Internal return rate

The return rate from an investment is computed using a similar idea.

Example

The annual return rate for the investment in the previous examples is the rate r at which the r-discounted payoffs match the initial price:

$$
150=\frac{50}{1+r}+\frac{75}{(1+r)^{2}}+\frac{100}{(1+r)^{3}}
$$

We can, in principle, solve for r :

$$
\begin{aligned}
x=\frac{1}{1+r} \quad \Longrightarrow \quad 100 x^{3}+75 x^{2}+50 x-150=0 \quad & \Longrightarrow \quad x=0.82909 \ldots \\
& \Longrightarrow \quad r \approx 0.206 .
\end{aligned}
$$

Hence, this opportunity corresponds to an approximately 20% return rate. (So that there is a positive NPV for an alternative 10% return rate is unsurprising.)

Of course, the PV of this opportunity at the internal return rate should equal $\$ 150$.

Rates and present values

Given an alternative investment with required return rate r, and an opportunity with a net present value $N P V$ and internal return rate r_{I}, we have two ways to determine whether the opportunity is attractive:

- If $N P V \geqslant 0$, then the opportunity is attractive
- If $r_{I} \geqslant r$, then the opportunity is attractive

Are these criteria the same?

Rates and present values

Given an alternative investment with required return rate r, and an opportunity with a net present value $N P V$ and internal return rate r_{I}, we have two ways to determine whether the opportunity is attractive:

- If $N P V \geqslant 0$, then the opportunity is attractive
- If $r_{I} \geqslant r$, then the opportunity is attractive

Are these criteria the same?

Theorem

Assume every periodic payment is strictly positive. Suppose there is some positive number r_{I} corresponding to the internal return rate. Then r_{I} is unique, and:
$-N P V>0 \Longleftrightarrow r_{I}>r$
$-N P V=0 \Longleftrightarrow r_{I}=r$
$-N P V<0 \Longleftrightarrow r_{I}<r$
(So, yes, these are the same thing.)

Application: annuities
An annuity is an agreement for a series of payments made at a regular period for a fixed term.

- loans and debt with interest (e.g., mortgages, car loans, credit card balances)
- pension plan payments
- social security

Note that whether we receive payment or make payments, the problem of valuation of these products identical.

Application: annuities
An annuity is an agreement for a series of payments made at a regular period for a fixed term.

- loans and debt with interest (e.g., mortgages, car loans, credit card balances)
- pension plan payments
- social security

Note that whether we receive payment or make payments, the problem of valuation of these products identical.

Here is an example of a "simple" annuity:
You receive a monthly payment of $\$ 100$ monthly over a term of 3 years.
First let's determine the future value of this annuity, i.e., the worth of this annuity after 3 years.

Application: annuities
An annuity is an agreement for a series of payments made at a regular period for a fixed term.

- loans and debt with interest (e.g., mortgages, car loans, credit card balances)
- pension plan payments
- social security

Note that whether we receive payment or make payments, the problem of valuation of these products identical.

Here is an example of a "simple" annuity:
You receive a monthly payment of $\$ 100$ monthly over a term of 3 years.
First let's determine the future value of this annuity, i.e., the worth of this annuity after 3 years.

We'll assume the ability to invest money with an interest rate r, compounded monthly.
This translates into:

- The $\$ 100$ after the end of month 1 is invested for 35 months with future value $100\left(1+\frac{r}{12}\right)^{35}$
- The $\$ 100$ after the end of month 2 is invested for 34 months with future value $100\left(1+\frac{r}{12}\right)^{34}$
- The $\$ 100$ after the end of month 3 is invested for 33 months with future value $100\left(1+\frac{r}{12}\right)^{33}$

Annuities: future value
Hence, the future value of this annuity is:

$$
\begin{aligned}
F V & =100\left(1+\frac{r}{12}\right)^{35}+100\left(1+\frac{r}{12}\right)^{34}+\cdots+100 \\
& =100 \sum_{j=0}^{35}\left(1+\frac{r}{12}\right)^{j} \quad \text { Recall: } \sum_{j=0}^{n} \gamma^{j=} \frac{\chi^{n+1}-1}{z^{-1}} \\
& =100 \frac{\left(1+\frac{r}{12}\right)^{36}-1}{1+\frac{r}{12}-1} \\
& =\frac{1200}{r}\left[\left(1+\frac{r}{12}\right)^{36}-1\right]
\end{aligned}
$$

Annuities: future value
Hence, the future value of this annuity is:

$$
\begin{aligned}
F V & =100\left(1+\frac{r}{12}\right)^{35}+100\left(1+\frac{r}{12}\right)^{34}+\cdots+100 \\
& =100 \sum_{j=0}^{35}\left(1+\frac{r}{12}\right)^{j} \\
& =100 \frac{\left(1+\frac{r}{12}\right)^{36}-1}{1+\frac{r}{12}-1} \\
& =\frac{1200}{r}\left[\left(1+\frac{r}{12}\right)^{36}-1\right]
\end{aligned}
$$

With some calculus exercises one can confirm expected behavior of this future value on r :

- FV increases as r increases (for more than 1 period)
- FV accelerates as r increases (for more than 2 periods).

Annuities: present value
In many cases, today's value (the present value) of the annuity is more useful than the future value.

The present value of this annuity is determined by its future value discounted by interest rate r compounded monthly:

- The $\$ 100$ payment after the end of month 1 has PV $\frac{100}{1+\frac{r}{12}}$.
- The $\$ 100$ payment after the end of month 2 has PV $\frac{100}{\left(1+\frac{r}{11}\right)^{2}}$.
- The $\$ 100$ payment after the end of month 3 has PV $\frac{100}{\left(1+\frac{r}{12}\right)^{3}}$.
- :

Annuities: present value
In many cases, today's value (the present value) of the annuity is more useful than the future value.

The present value of this annuity is determined by its future value discounted by interest rate r compounded monthly:

- The $\$ 100$ payment after the end of month 1 has PV $\frac{100}{1+\frac{r}{12}}$.
- The $\$ 100$ payment after the end of month 2 has PV $\frac{100}{\left(1+\frac{r}{112}\right)^{2}}$.
- The $\$ 100$ payment after the end of month 3 has PV $\frac{100}{\left(1+\frac{r}{12}\right)^{3}}$.

For 36 periods, we then have the following present value:

$$
\begin{aligned}
P V & =\underbrace{\frac{100}{1+\frac{r}{12}}}_{\text {period } 1}+\underbrace{\frac{100}{\left(1+\frac{r}{12}\right)^{2}}}_{\text {period } 2}+\underbrace{\frac{100}{\left(1+\frac{r}{12}\right)^{3}}}_{\text {period } 3}+\cdots \\
& =100 \sum_{j=1}^{36} \frac{1}{\left(1+\frac{r}{12}\right)^{j}}=100\left[\sum_{j=0}^{3} \frac{1}{(1+r / 12)^{j}}-1\right] \\
& =100\left(\frac{1-\frac{1}{\left(1+\frac{r}{12}\right)^{37}}}{1-\frac{1}{1+\frac{r}{12}}}-1\right)=\frac{1200}{r}\left(1-\frac{1}{\left(1+\frac{r}{12}\right)^{36}}\right)
\end{aligned}
$$

Annuities, summarized
Using the same computations as in the previous slides, we can make abstract statements about annuity valuations:

Assume a simple annuity is paid over a total of n periods with a periodic payment P. Assume an annual interest rate r compounded over k periods per year, coinciding with the annuity payments.
(Hence this annuity extends for n / k years.)

Annuities, summarized
Using the same computations as in the previous slides, we can make abstract statements about annuity valuations:

Assume a simple annuity is paid over a total of n periods with a periodic payment P. Assume an annual interest rate r compounded over k periods per year, coinciding with the annuity payments.
(Hence this annuity extends for n / k years.)
Then:

- The future value of the annuity (at the end of the annuity term) is

$$
F V=\frac{P k}{r}\left[\left(1+\frac{r}{k}\right)^{n}-1\right] .
$$

- The present value of the annuity (today) is

$$
P V=\frac{P k}{r}\left(1-\frac{1}{\left(1+\frac{r}{k}\right)^{n}}\right) .
$$

Annuities, summarized
Using the same computations as in the previous slides, we can make abstract statements about annuity valuations:

Assume a simple annuity is paid over a total of n periods with a periodic payment P. Assume an annual interest rate r compounded over k periods per year, coinciding with the annuity payments.
(Hence this annuity extends for n / k years.)
Then:

- The future value of the annuity (at the end of the annuity term) is

$$
F V=\frac{P k}{r}\left[\left(1+\frac{r}{k}\right)^{n}-1\right] .
$$

- The present value of the annuity (today) is

$$
P V=\frac{P k}{r}\left(1-\frac{1}{\left(1+\frac{r}{k}\right)^{n}}\right) .
$$

The annuity model is not restricted to valuation of standard notions of annuities:
A lender can determine the principal for a loan by assuming the lendee is paying an annuity periodically with a given interest rate.
1.) (Loan valuation) Suppose the (annual) interest rate for a loan is currently 3% for a loan term of 3 years, and the interest will compound monthly. You estimate that you will be able to afford a maximum monthly payment of $\$ 300$ over the loan term. What is the maximum loan amount you can take out and still afford the monthly payments?

$$
\begin{aligned}
& \text { Principal today }=P V \text { of liar } \\
& r= 0.03 \\
& k= 12 \\
& n=12.3=36 \\
& P= 300 \\
& P V=\frac{P k}{r}\left[1-\frac{1}{\left.1+\frac{r}{k}\right)^{n}}\right]=\frac{3600}{0.03}\left[1-\frac{\left.1+\frac{0.03}{12}\right)^{36}}{\left(1+\frac{1}{3}\right.}\right]
\end{aligned}
$$

Example 2.13. (Paying Off Debt) Suppose that you borrow $\$ 100,000$ at an annual interest rate of 6% with monthly compounding. For an ordinary annuity based on this compounding, what is your minimum payment per month to pay off the loan in 10 years?

$$
\begin{aligned}
& P V=100.000 \\
& r=0.06 \\
& k=12 \\
& n=120
\end{aligned}
$$

$$
\begin{aligned}
& P V=\frac{P k}{r}\left[1-\frac{1}{\left(1+\frac{r}{k}\right)^{n}}\right] \\
& \begin{aligned}
P=\frac{r \cdot P V}{k\left[1-\frac{1}{\left(1+\frac{r}{k}\right)^{n}}\right]} & =\frac{0.06 \cdot 100.000}{12\left[1-\frac{1}{\left(1+\frac{0.06}{R 2}\right)^{120}}\right]} \\
& =\ldots
\end{aligned}
\end{aligned}
$$

Another example
Consider the setup of the previous example: you borrow $\$ 100,000$ with an annual interest rate of 6% compounded monthly, and you intend to pay $\$ 1,000$ per month toward the loan. How many years will it take for you to repay the loan?

$$
\begin{aligned}
& P V=100,000 \\
& r=0.06 \\
& k=12 \\
& P V=\frac{P K}{r}\left[1-\frac{1}{\left(1+\frac{k}{k}\right)^{n}}\right] \\
& P=1000 \\
& \frac{1}{\left(1+\frac{r}{k}\right)^{n}}=1-\frac{r \cdot P V}{R_{c} K} \\
& n \log \left(1+\frac{r}{k}\right)=\log \left(\frac{1}{1-\frac{r \cdot P V}{P-k}}\right)
\end{aligned}
$$

Stock valuation
Present value is also useful for valuation of stocks and bonds:
The dividend discount model (DDM) is the assumption that the value of a stock (today) is given by the sum of (a) the present value of the stock's future price and (b) the present value of the dividends the company pays out.

Stock valuation

Present value is also useful for valuation of stocks and bonds:
The dividend discount model (DDM) is the assumption that the value of a stock (today) is given by the sum of (a) the present value of the stock's future price and (b) the present value of the dividends the company pays out.

Suppose you purchase stock in a company that today paid a dividend of D_{0} (say per share). For modeling purposes, we'll assume:

- You hold the stock for n periods, at which time you liquidate your shares.
- After n periods, the stock share will be priced at P_{n}.
- The company will pay a dividend every period that grows with per-period rate r_{D}.
- The per-period internal return rate r_{I} of the company is known.
- If the company had not paid dividends, then the money would have grown at the company's internal return rate.

Stock valuation

Present value is also useful for valuation of stocks and bonds:
The dividend discount model (DDM) is the assumption that the value of a stock (today) is given by the sum of (a) the present value of the stock's future price and (b) the present value of the dividends the company pays out.

Suppose you purchase stock in a company that today paid a dividend of D_{0} (say per share). For modeling purposes, we'll assume:

- You hold the stock for n periods, at which time you liquidate your shares.
- After n periods, the stock share will be priced at P_{n}.
- The company will pay a dividend every period that grows with per-period rate r_{D}.
- The per-period internal return rate r_{I} of the company is known.
- If the company had not paid dividends, then the money would have grown at the company's internal return rate.
Then according to the DDM, the present value of a stock share is:

$$
P V=\underbrace{\frac{P_{n}}{\left(1+r_{I}\right)^{n}}}_{\text {PV of share price }}+\sum_{j=1}^{n} \underbrace{\frac{D_{0}\left(1+r_{D}\right)^{j}}{\left(1+r_{I}\right)^{j}}}_{\text {PV of period- } j \text { dividend }}
$$

2.) (Bond valuation) Bonds are priced based on today's present value of the instrument; the "face value" of a bond is the amount paid to the bearer at expiry of the bond's term ("maturity"). In the simplest setting, the price is based on the sum of two things: (i) the present value of the face value of the bond (which is received at maturity), (ii) the present value of an annuity ("coupon payment") paid to the holder at regular intervals; the payment per period equals the face value times the "coupon/interest rate" (prorated from a quoted annual rate). The "yield to maturity" is an assumed (annual) interest rate on which the present value is discounted from future value.
(a) Determine the price of the following bond: A bond with a face value of $\$ 1000$ with a maturity term of 2 years and a coupon rate of 4%. The coupon payments are made semiannually (i.e., twice a year at $\$ 20$ per payment) until the bond matures. Throughout, assume a discount rate ("yield to maturity") of 3%.
(b) "Par" refers to a bond face value. Is the bond in part (a) priced below, at, or above par?
(c) (6890 students only) Prove in general that if the yield to maturity equals the coupon rate, then the present value of the bond is exactly par.

Petters, Arlie O. and Xiaoying Dong (2016). An Introduction to Mathematical Finance with Applications: Understanding and Building Financial Intuition. Springer. ISBN: 978-1-4939-3783-7.

