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L02-S02
Interest

Interest is the price for access to money (typically someone else’s).

Why does (temporary) access money cost more money?
– Money is a resource
– “Opportunity cost”: If a lender had not given money, they could have used it to make

money in some other way
– Inflation: the purchasing power of $1 generally decreases with time

The amount of interest charged to a lendee is typically levied through a rate (price per unit
time).

Hence, loans almost uniformly specify some basic terms:
– Principal: the amount of money the lender temporarily gives to the lendee.
– Rate: i.e., the “interest rate”, which is the per-time-unit cost that the lendee must

bear.
Frequently loans must be paid in full (principal + interest), either in as a lump sum or in
installments, by some specified end time of the loan, the term.
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L02-S03
Interest rates

The time unit for quoting as rate is important. One of the most common time units is
years.

Example
A lendee takes out a loan of $500, with an annual (yearly) interest rate of 5%.

This means that at the end of one year, the total interest owed is 0.05 ˆ 500 “ $25.

As seen above, the interest rate can be discussed either as a percentage (5%) or a decimal
(0.05).

Hence generally if the interest rate is r (as a decimal) on a principal of amount P , and t
units of time have passed, then the total (“simple”) interest owed is,

“Simple” Interest “ trP.

This is just the charge for the service of instituting a loan – the principal P is also a cost
the lendee must bear!

Interest rate conventions and extensions:
– We will always assume that the interest rate r is strictly positive and that r ! 1.

(Although r “ 0 has uses and r † 0 is possible.)
– The rate r can depend on time t.
– For simple interest, the rate can easily be converted to other units of time: E.g., 5%

annual rate equals a 5{12% « 0.417% monthly rate.
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L02-S04
Interest minutiae

There are several “real world” aspects of risk that we typically will not consider:
– “Risk”: Interest can also be used to offset the potential for the loan conditions to be

violated, typically by the lendee
– Transaction costs – the price of money exchanging hands
– Taxes and other fees

From the lender/investor point of view: assuming an end-term lump sum payment, the
total worth of the loan as a financial instrument depends on the time elapsed t:

Loan value “ p1 ` rtqP. (for simple interest)

The total return rate is the relative change of the financial instrument:

Total return rate :“ (Loan value) - P
P

,

where we emphasize again that Loan value depends on t.

The total return amount is the numerator of the expression above.
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L02-S05
A glimpse at present value

Example
Suppose I invest $1,000 into a bond, with a(n annual) rate of 2% and a term of 3 years.
Assume simple interest.

The total bond payout at expiry of the term is 1, 060.
The total return rate is 6% (over 3 years!)
Generally I could say that the value V ptq of my investement at time t is

V ptq “ V p0qp1 ` rtq “ 1000p1 ` 0.02tq.

I.e., V ptq is the time-t value of V p0q today (t “ 0).

Alternatively, V p0q is the present value of V ptq dollars at time t (the future).

Bonds are typically sold for a fixed maturity amount (end-term value), at the present value.

I.e., If I sold a bond that will be worth $1,000 in 3 years time at a rate of 2%, then the
price of the bond today should be,

V p0q “ V ptq
1 ` rt

“ 1000

1 ` 0.02 ˆ 3
« $943.40

The coefficient p1 ` rtq´1 is called the discount factor.
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L02-S06
Compound interest

From the lending/investing point of view simple interest has a deficiency: after every
period, interest is accrued, but may not yet be paid back, and hence is effectively
additional money loaned.

Compound interest addresses this “problem” by levying the interest rate on the principal
plus any accrued interest.

Example
Suppose I invest $1,000 into a bond, with a(n annual) rate of 2%.
Assume compound interest, compounded every year.

The total value V ptq for integers t is then,

V ptq “ V p0q ` rV0loomoon
Year 1 interest

` rV p1qloomoon
Year 2 interest

` rV p2qloomoon
Year 3 interest

` ¨ ¨ ¨

“ V p0q ` rV p0q ` rpV p0q ` rV p0qq ` rrV p0q ` rV p0q ` rpV p0q ` rV p0qqs ` ¨ ¨ ¨
“ p1 ` rqtV0.

Or more transparently:

V ptq “ p1 ` rqV pt ´ 1q “ p1 ` rqp1 ` rqV pt ´ 2q “ ¨ ¨ ¨ “ p1 ` rqtV p0q.

In general, a loan of term 3 years is worth $1000 ˆ p1 ` 0.02q3 « $1, 061.21 ° $1, 060.
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L02-S07
Compound interest and periods

Loans involving compound interest typically quote an anuual rate, which is prorated and
applied (compounded) across several periods. For example, suppose a principal P has a
rate of 3% that is compounded weekly (52 weeks per year). Then the total value of the
loan after 3 years will be,

P

ˆ
1 ` 0.03

52

˙156

.

More generally, a loan principal P with (annual) rate r with k-periodic compounding over
n periods has value,

P
´
1 ` r

k

¯n
.

And fractional compounding extends this formula to non-integer periods:

Loan value “ P
´
1 ` r

k

¯x
, x • 0.

Note: many loans apply simple interest (not compound) over fractional periods. We saw
in the previous example that compounding interest (annually) was better (for the investor)
than simple interest.

Is this true in general?
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L02-S08
Simplifying the question (and a smidge of math)

Suppose I have a loan rate r (say an annual rate), and consider an arbitrary number of
periods k P for a single time unit (say a year).

The question is: how does compound interest compare to the simple interest?

SI “ P p1 ` rq, (Simple interest)

CI “ P
´
1 ` r

k

¯k
, (k-periodic compound interest)

To compare SI versus CI, first recall the Binominal Theorem:

pa ` bqk “
nÿ

q“0

aqbk´q

ˆ
k
q

˙
,

ˆ
k
q

˙
“ k!

q!pk ´ qq! ,

Applying this to CI, we have,
CI

P
“

´
1 ` r

k

¯k
“ 1k

´ r

k

¯0
ˆ

k
0

˙
` 1k´1

´ r

k

¯1
ˆ

k
1

˙
` 1k´2

´ r

k

¯2
ˆ

k
2

˙
` ¨ ¨ ¨

“ 1 ` r

k
k ` r2

k2
kpk ´ 1q

2
` . . .

looooooooooomooooooooooon
Some non-negative stuff

• 1 ` r “ SI

P
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L02-S09
Continuously compounded interest

A k-periodic compounded interest on principal P over t total time units with rate r
corresponds to a value of

P
´
1 ` r

k

¯kt
.

We have essentially seen that larger k yields higher value. Continuous compounding sends
k to infinity:

lim
kÒ8

P
´
1 ` r

k

¯kt
“ P

„
lim
kÒ8

´
1 ` r

k

¯k
⇢

“ Pert.

Another way to see this is to consider a differential equations model:

Change in value per unit time “ pInterest rateq ˆ pCurrent valueq
dV

dt
“ rV,

and when supplemented with the initial data V p0q “ P , this yields,

V ptq “ Pert.
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Change in value per unit time “ pInterest rateq ˆ pCurrent valueq
dV

dt
“ rV,

and when supplemented with the initial data V p0q “ P , this yields,

V ptq “ Pert.
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L02-S10
How do banks compute interest?

More compounding periods is beneficial for lenders...

But continuous compounding introduces logistical challenges.
– Loans are often processed through intermediaries, so the moment money leaves the

bank, it might not be available to the lendee
– When a lendee pays back equity, at what precise time is the equity credited to the

loan?
Banks typically compound interest daily, with some nuances:

– Periods are measured with exact time, which is the lending time interval in days,
minus 1.

– Exact interest is computed using 365 days/year
– Ordinary interest is computed using 360 days/year (30 days per month for 12 months)

Bank’s frequently loan on exact time with ordinary interest.

Finally, a PSA: the annual percentage rate (APR) r is the interest rate.

It’s not the simple interest rate you owe.

The annual percentage yield (APY) is the actual yearly percentage change (computed
using compounding formulas), e.g., for APR r over 1 year:

APY “
´
1 ` r

360

¯360
´ 1 (as a ratio)
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L02-S11
Who sets interest rates?

Interest rates can be set by any entity, but must be competitive on the open market in
order to attract customers.

In the US, the central bank (i.e., monetary authority) sets short-term (§ 12 months)
interest rates.

This is the Federal Reserve (the “Fed”), specifically an appendage of this institution, the
Federal Open Market Committee (FOMC). The FOMC has direct power over the federal

discount rate – the rate at which the Fed loans to banks. (This is typically higher than
loans on the open market.)

The FOMC also has power to set variable interest rate behavior.

The FOMC has indirect power to set the federal funds rate – the rate at which banks lend
money to each other. It exercises this power by purchasing and/or selling financial products.

Long-term interest rates are mostly set by market forces – a particularly powerful influencer
is the auctioned price of long-term treasury bonds on the market.

Mortgage rates are determined by market forces, in particular the purchasing and trading of
mortgage loans.
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