# Department of Mathematics, University of Utah <br> Introduction to Mathematical Finance <br> MATH 5760/6890 - Section 001 - Fall 2023 <br> Homework 8 Solutions <br> Brownian motion 

Due: Tuesday, Nov 21, 2023

Submit your homework assignment on Canvas via Gradescope.
1.) Recall that Brownian motion, which we identify with the log-return of an asset price, does not have bounded variation. Here is an exercise to motivate why this is consistent with our finance models: Let $T, \mu, \sigma, S_{0}$ be fixed, with $T, \sigma, S_{0}>0$. Consider a real-world CRR model for the price $S_{n}$ of the security $S$. Show that in the limit as $n \rightarrow \infty$, the variation of the log-returns of the real-world CRR trajectory is unbounded:

$$
\lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left|\log S_{j}-\log S_{j-1}\right|=\infty
$$

(This statement is true with probability 1.)
Solution: The CRR binomial tree model is that $L_{j}=\log S_{j+1}-\log S_{j}$ is a $\operatorname{Bernoulli}\left(p_{n}\right)$ random variable taking values $\log u_{n}$ with probability $p_{n}$ and $\log d_{n}$ with probability $1-p_{n}$. The real-world CRR equations prescribe the values for $\left(p_{n}, u_{n}, d_{n}\right)$ :

$$
u_{n}=\exp \left(\sigma \sqrt{h_{n}}\right), \quad d_{n}=\exp \left(-\sigma \sqrt{h_{n}}\right), \quad p_{n}=\frac{1}{2}\left(1+\frac{\mu}{\sigma} \sqrt{h_{n}}\right),
$$

where $h_{n}=T / n$. Note then that,

$$
\left|\log S_{j}-\log S_{j-1}\right|=\left|\log \frac{S_{j}}{S_{j-1}}\right|=\left|\log L_{j-1}\right|= \begin{cases}\left|\log u_{n}\right|, & \text { with probability } p_{n} \\ \left|\log d_{n}\right|, & \text { with probability } 1-p_{n}\end{cases}
$$

However, the real-world CRR equations imply,

$$
\left|\log u_{n}\right|=\left|\log d_{n}\right|=\sigma \sqrt{h_{n}} .
$$

Hence, with probability 1,

$$
\left|\log S_{j}-\log S_{j-1}\right|=\sigma \sqrt{h_{n}}
$$

and therefore,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left|\log S_{j}-\log S_{j-1}\right|=\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \sigma \sqrt{h_{n}} & =\sigma \lim _{n \rightarrow \infty} n \sqrt{h_{n}} \\
& =\sigma \lim _{n \rightarrow \infty} \sqrt{T n}=\infty
\end{aligned}
$$

as claimed.
2.) In this exercise, you will provide some evidence to support the fact that $[B]_{T}=T$, where $B(t)$ is a standard Brownian motion. Define a discrete-time approximation of the quadratic variation of Brownian motion as,

$$
Q_{n}:=\sum_{j=1}^{n}\left(B\left(t_{j}\right)-B\left(t_{j-1}\right)^{2}, \quad t_{j}=j h_{n}, \quad h_{n}:=\frac{T}{n} .\right.
$$

Show that $Q_{n}$ has the following first- and second-order statistics for a fixed $n$ :

$$
\mathbb{E} Q_{n}=T, \quad \quad \operatorname{Var} Q_{n}=\frac{2 T^{2}}{n}
$$

(Hence, as $n \rightarrow \infty, Q_{n}$ converges to mean- $T$ random variable with variance 0 .)
Here is a helpful fact to aid computations: if $X \sim \mathcal{N}(0,1)$, then $\mathbb{E} X^{4}=3$.
Solution: First, we note that by standard properties of Brownian motion:

$$
B\left(t_{j}\right)-B\left(t_{j-1}\right) \sim \mathcal{N}\left(0, h_{n}\right),
$$

and that

$$
X_{j}:=B\left(t_{j}\right)-B\left(t_{j-1}\right), \quad\left\{X_{j}\right\}_{j=1}^{n} \text { are iid. }
$$

We will utilize the hint at this time: since $X_{j} \sim \mathcal{N}\left(0, h_{n}\right)$, then $\frac{1}{\sqrt{h_{n}}} X_{j} \sim \mathcal{N}(0,1)$, and so

$$
\frac{1}{h_{n}^{2}} \mathbb{E} X_{j}^{4}=\mathbb{E}\left(\frac{1}{\sqrt{h_{n}}} X_{j}\right)^{4}=3 \Longrightarrow \mathbb{E} X_{j}^{4}=3 h_{n}^{2}
$$

Returning to computing statistics of $Q_{n}$, we have:

$$
\mathbb{E} Q_{n}=\sum_{j=1}^{n} \mathbb{E}\left(B\left(t_{j}\right)-B\left(t_{j-1}\right)^{2}=\sum_{j=1}^{n} \operatorname{Var} X_{j}=n h_{n}=T,\right.
$$

which shows the desired first-order statistic equality. The second equality requires us to compute,

$$
\operatorname{Var} Q_{n}=\sum_{j=1}^{n} \operatorname{Var}\left(B\left(t_{j}\right)-B\left(t_{j-1}\right)^{2}=\sum_{j=1}^{n} \operatorname{Var} X_{j}^{2}\right.
$$

Note that to compute the desired value, we need to compute $\operatorname{Var} X_{j}^{2}$, where $X_{j}$ is a standard normal random variable. This can be directly:

$$
\operatorname{Var} X_{j}^{2}=\mathbb{E}\left(X_{j}^{2}-\mathbb{E} X_{j}^{2}\right)^{2}=\mathbb{E} X_{j}^{4}-\left(\mathbb{E} X_{j}^{2}\right)^{2}=\mathbb{E} X_{j}^{4}-h_{n}^{2}=3 h_{n}^{2}-h_{n}^{2}=2 h_{n}^{2}
$$

Putting this back in our equation for $\operatorname{Var} Q_{n}$, yields,

$$
\operatorname{Var} Q_{n}=\sum_{j=1}^{n} \operatorname{Var} X_{j}^{2}=\sum_{j=1}^{n} 2 h_{n}^{2}=2 n \frac{T^{2}}{n^{2}}=\frac{2 T^{2}}{n},
$$

again as desired.

