# Department of Mathematics, University of Utah 

# Introduction to Mathematical Finance <br> MATH 5760/6890 - Section 001 - Fall 2023 

## Homework 8

Continuous-time models
Due: Tuesday, Nov 14, 2023

Submit your homework assignment on Canvas via Gradescope.
1.) Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ for some $\mu \in \mathbb{R}, \sigma^{2}>0$. Define $Y:=e^{X}$, which is a lognormal random variable. Show that

$$
\mathbb{E} Y=\exp \left(\mu+\sigma^{2} / 2\right) .
$$

2.) Given $\left(\mu, \sigma^{2}, T, n\right)$, suppose that $\left(p_{n}, u_{n}, d_{n}\right)$ are set according to the real-world CRR equations. The inter-period $\log$-return for time $t_{j}$ is given by,

$$
L_{j}= \begin{cases}\log u_{n}, & \text { with probability } p_{n} \\ \log d_{n}, & \text { with probability } 1-p_{n}\end{cases}
$$

Show that the standardization of $L_{j}$, i.e., the random variable,

$$
\widetilde{L}_{j}=\frac{L_{j}-\mathbb{E} L_{j}}{\sqrt{\operatorname{Var} L_{j}}}
$$

has distribution,

$$
\widetilde{L_{j}}= \begin{cases}\frac{1-p_{n}}{\sqrt{p_{n}\left(1-p_{n}\right)}}, & \text { with probability } p_{n} \\ \frac{-p_{n}}{\sqrt{p_{n}\left(1-p_{n}\right)}}, & \text { with probability } 1-p_{n}\end{cases}
$$

3.) (MATH 6890 students only) The Central Limit Theorem states that if $\left\{X_{j}\right\}_{j=1}^{\infty}$ is a sequence of iid random variables with mean zero and variance $\operatorname{Var} X_{j}=\sigma^{2}$, then,

$$
\lim _{n \uparrow \infty} \frac{1}{\sqrt{n}} \sum_{j=1}^{n} X_{j} \sim \mathcal{N}\left(0, \sigma^{2}\right) .
$$

Now for a fixed $n \in \mathbb{N}$, let $\left\{X_{n, j}\right\}_{j=1}^{n}$ be a sequence of $n$ iid zero-mean random variables. (But, for example, their second moments may differ as a function of $n$.) Provide an example to show that it is not necessarily true that

$$
\frac{1}{\sqrt{n}} \sum_{j=1}^{n} X_{n, j}
$$

converges to a normally distributed random variable as $n \uparrow \infty$.

