Department of Mathematics, University of Utah

Introduction to Mathematical Finance
MATH 5760/6890 - Section 001 - Fall 2023
Homework 8 Solutions
Continuous-time models
Due: Tuesday, Nov 14, 2023

Submit your homework assignment on Canvas via Gradescope.

1.) Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ for some $\mu \in \mathbb{R}, \sigma^{2}>0$. Define $Y:=e^{X}$, which is a lognormal random variable. Show that

$$
\mathbb{E} Y=\exp \left(\mu+\sigma^{2} / 2\right)
$$

Solution: We recall that the probability density function (pdf) of X has the form,

$$
p_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) .
$$

Hence, the expectation of Y is given by,

$$
\begin{aligned}
\mathbb{E} Y & =\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp (x) \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) \mathrm{d} x \\
& =\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}+x\right) \mathrm{d} x
\end{aligned}
$$

We complete the square for the term under the exponential:

$$
\begin{aligned}
-\frac{(x-\mu)^{2}}{2 \sigma^{2}}+x & =-\frac{1}{2 \sigma^{2}}\left[x^{2}-2 \mu x+\mu^{2}-2 x \sigma^{2}\right] \\
& =-\frac{1}{2 \sigma^{2}}\left[x^{2}-x\left(2 \mu+2 \sigma^{2}\right)+\mu^{2}\right] \\
& =-\frac{1}{2 \sigma^{2}}\left[x^{2}-x\left(2 \mu+2 \sigma^{2}\right)+\left(\mu+\sigma^{2}\right)^{2}-\left(\mu+\sigma^{2}\right)^{2}+\mu^{2}\right] \\
& =-\frac{1}{2 \sigma^{2}}\left(x-\left(\mu+\sigma^{2}\right)\right)^{2}+\frac{1}{2 \sigma^{2}}\left[2 \mu \sigma^{2}+\sigma^{4}\right] \\
& =-\frac{1}{2 \sigma^{2}}\left(x-\left(\mu+\sigma^{2}\right)\right)^{2}+\left(\mu+\frac{\sigma^{2}}{2}\right) .
\end{aligned}
$$

Using this in the integral for $\mathbb{E} Y$, we obtain,

$$
\begin{aligned}
\mathbb{E} Y & =\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left(-\frac{\left(x-\left(\mu+\sigma^{2}\right)\right)^{2}}{2 \sigma^{2}}\right) \exp \left(\mu+\frac{\sigma^{2}}{2}\right) \mathrm{d} x \\
& =\exp \left(\mu+\frac{\sigma^{2}}{2}\right)\left[\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left(-\frac{\left(x-\left(\mu+\sigma^{2}\right)\right)^{2}}{2 \sigma^{2}}\right) \mathrm{d} x\right] \\
& =\exp \left(\mu+\frac{\sigma^{2}}{2}\right)
\end{aligned}
$$

where the last equality uses the fact that the term in square brackets is the integral of the pdf of a random variable with a distribution $\mathcal{N}\left(\mu+\sigma^{2}, \sigma^{2}\right)$, and hence is equal to 1 .
2.) Given $\left(\mu, \sigma^{2}, T, n\right)$, suppose that $\left(p_{n}, u_{n}, d_{n}\right)$ are set according to the real-world CRR equations. The inter-period \log-return for time t_{j} is given by,

$$
L_{j}= \begin{cases}\log u_{n}, & \text { with probability } p_{n} \\ \log d_{n}, & \text { with probability } 1-p_{n}\end{cases}
$$

Show that the standardization of L_{j}, i.e., the random variable,

$$
\widetilde{L}_{j}=\frac{L_{j}-\mathbb{E} L_{j}}{\sqrt{\operatorname{Var} L_{j}}}
$$

has distribution,

$$
\widetilde{L_{j}}= \begin{cases}\frac{1-p_{n}}{\sqrt{p_{n}\left(1-p_{n}\right)}}, & \text { with probability } p_{n} \\ \frac{-p_{n}}{\sqrt{p_{n}\left(1-p_{n}\right)}}, & \text { with probability } 1-p_{n}\end{cases}
$$

Solution: Although some of these computations are already done in lecture slides S19, we reiterate some of the results here: With $h_{n}=T / n$, the real-world CRR equations are,

$$
u_{n}=\exp \left(\sigma \sqrt{h_{n}}\right), \quad d_{n}=\exp \left(-\sigma \sqrt{h_{n}}\right), \quad p_{n}=\frac{1}{2}\left(1+\frac{\mu}{\sigma} \sqrt{h_{n}}\right) .
$$

We note that L_{j} can be written as an affine transformation of a $\operatorname{Bernoulli}\left(p_{n}\right)$ random variable:

$$
L_{j}=\log d_{n}+X \log \frac{u_{n}}{d_{n}}=-\log u_{n}+2 X \log u_{n}, \quad X \sim \operatorname{Bernoulli}\left(p_{n}\right) .
$$

Knowing (or directly computing) that a $\operatorname{Bernoulli}\left(p_{n}\right)$ random variable has statistics,

$$
\mathbb{E} X=p_{n}, \quad \operatorname{Var} X=p_{n}\left(1-p_{n}\right),
$$

then with the assistance of the real-world CRR equations we directly compute

$$
\begin{aligned}
\mathbb{E} L_{j} & =-\log u_{n}+2(\mathbb{E} X) \log u_{n}=\left(2 p_{n}-1\right) \log u_{n}=\frac{\mu}{\sigma} \sqrt{h_{n}} \log u_{n}=\mu h_{n}, \\
\operatorname{Var} L_{j} & =4\left(\log u_{n}\right)^{2} \operatorname{Var} X=4 p_{n}\left(1-p_{n}\right)\left(\log u_{n}\right)^{2}=4 p_{n}\left(1-p_{n}\right) \sigma^{2} h_{n} .
\end{aligned}
$$

Hence, $\widetilde{L}_{j}=\left(L_{j}-\mathbb{E} L_{j}\right) / \sqrt{\operatorname{Var} L_{j}}$ has distribution,

$$
\widetilde{L}_{j}= \begin{cases}\frac{\log u_{n}-\mu h_{n}}{\sqrt{4 h_{n} \sigma^{2} p_{n}\left(1-p_{n}\right)}}, & \text { with probability } p_{n}, \\ \frac{\log d_{n}-\mu h_{n}}{\sqrt{4 h_{n} \sigma^{2} p_{n}\left(1-p_{n}\right)}}, & \text { with probability } 1-p_{n} .\end{cases}
$$

Note that,

$$
\frac{\log u_{n}-\mu h_{n}}{2 \sigma \sqrt{h_{n}}}=\frac{\sigma \sqrt{h_{n}}-\mu h_{n}}{2 \sigma \sqrt{h_{n}}}=\frac{1}{2}-\frac{1}{2} \frac{\mu}{\sigma} \sqrt{h_{n}}=1-p_{n} .
$$

where we have used the real-world CRR equations twice. Similarly,

$$
\frac{\log d_{n}-\mu h_{n}}{2 \sigma \sqrt{h_{n}}}=\frac{-\sigma \sqrt{h_{n}}-\mu h_{n}}{2 \sigma \sqrt{h_{n}}}=-\frac{1}{2}-\frac{1}{2} \frac{\mu}{\sigma} \sqrt{h_{n}}=-p_{n}
$$

Using these facts in our previous expression for the distribution of \widetilde{L}_{j}, we obtain,

$$
\widetilde{L_{j}}= \begin{cases}\frac{1-p_{n}}{\sqrt{p_{n}\left(1-p_{n}\right)}}, & \text { with probability } p_{n} \\ \frac{-p_{n}}{\sqrt{p_{n}\left(1-p_{n}\right)}}, & \text { with probability } 1-p_{n}\end{cases}
$$

as desired.
3.) (MATH 6890 students only) The Central Limit Theorem states that if $\left\{X_{j}\right\}_{j=1}^{\infty}$ is a sequence of iid random variables with mean zero and variance $\operatorname{Var} X_{j}=\sigma^{2}$, then,

$$
\lim _{n \uparrow \infty} \frac{1}{\sqrt{n}} \sum_{j=1}^{n} X_{j} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Now for a fixed $n \in \mathbb{N}$, let $\left\{X_{n, j}\right\}_{j=1}^{n}$ be a sequence of n iid zero-mean random variables. (But, for example, their second moments may differ as a function of n.) Provide an example to show that it is not necessarily true that

$$
\frac{1}{\sqrt{n}} \sum_{j=1}^{n} X_{n, j}
$$

converges to a normally distributed random variable as $n \uparrow \infty$.
Solution: There are several examples possible; here is a simple one: For a fixed n, let

$$
X_{n, j}=\left\{\begin{aligned}
\sqrt{n}, & \text { with probability } 1 / 2 \\
-\sqrt{n}, & \text { with probability } 1 / 2
\end{aligned}\right.
$$

It is straightforward to verify that $\mathbb{E} X_{n, j}=0$ and $\operatorname{Var} X_{n, j}=n$. Now fix a very large n. The (standard) Central Limit Theorem would state that

$$
\frac{1}{\sqrt{n}} \sum_{j=1}^{n} X_{n, j}
$$

is approximately distributed like a $\mathcal{N}\left(\mu, \tilde{\sigma}^{2}\right)$ random variable, with

$$
\mu=0, \quad \quad \tilde{\sigma}^{2}=\operatorname{Var} X_{n, j}=n
$$

But we see that $\tilde{\sigma}^{2}$ depends on n, and in particular $\lim _{n \uparrow \infty} \widetilde{\sigma}^{2}=\infty$. Hence, as $n \uparrow \infty$ the quantity,

$$
\frac{1}{\sqrt{n}} \sum_{j=1}^{n} X_{n, j}
$$

has variance that diverges, and hence cannot converge to a normally distributed random variable.

