DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH Introduction to Mathematical Finance MATH 5760/6890 – Section 001 – Fall 2023 Homework 6 The Binomial Pricing Model

Due: Tuesday, Oct 31, 2023

Submit your homework assignment on Canvas via Gradescope.

- 1.) Consider an n = 100-period Binomial Pricing Model with (p, u, d) = (0.35, 1.2, 0.9) and an initial value of $S_0 = 100$.
 - (a) What is the maximal value of S_{100} under this model? The minimial value?
 - (b) Compute the probability that $S_{100} \ge 100$.
- **2.)** Let $X \sim \text{Bernoulli}(p)$, and let $\{X_i\}_{i=1}^n$ be n iid copies of X. Let $Y = \sum_{i=1}^n X_i \sim \text{Binomial}(n, p)$. Throughout this problem, let a > 0 be a deterministic constant.
 - (a) Compute $\mathbb{E}a^X$ with a > 0 a deterministic constant.
 - (b) If V and W are two independent random variables, then $\mathbb{E}(VW) = (\mathbb{E}V)(\mathbb{E}W)$. Use this to compute $\mathbb{E}a^{Y}$.
 - (c) Compute the variance of a^Y .
 - (d) Apply these facts to the Binomial Pricing Model with parameters (p, u, d): with $S_n = S_0 e^L$, where $L = \sum_{i=1}^n L_i = \sum_{i=1}^n \log G_i$ is the log-return, show that,

$$\mathbb{E}\frac{S_n}{S_0} = (pu + (1-p)d)^n,$$

Var $\frac{S_n}{S_0} = (pu^2 + (1-p)d^2)^n - (pu + (1-p)d)^{2n}$

3.) Consider an *n*-period Binomial Pricing Model for an asset over the time interval $t \in [0, T]$ with d = 1/u < 1. (This is a special type of recombination condition.) Suppose that from historical data we compute a *T*-time expected return rate *r* for the asset:

$$\mathbb{E}S_n = S_0(1+r),$$

where r is a deterministic, positive constant r > 0.

- (a) Show that the expected value of the gross return, $\mathbb{E}\frac{S_n}{S_0}$, is given by $(pu+(1-p)/u)^n$.
- (b) Show that in order for S_n under the given binomial pricing model to achieve an expected gross return rate (1 + r), then u must satisfy,

$$u = \frac{1}{2p} \left(e^{\mu} \pm \sqrt{e^{2\mu} - 4p(1-p)} \right),$$

where $\mu = \frac{\log(1+r)}{n}$.

- (c) Show that $e^{2\mu} > 4p(1-p)$, and hence there are always two real values of u above.
- (d) Show that if we choose the minus option in formula with \pm above, then u < 1, and hence the only valid choice is the plus option.