Department of Mathematics, University of Utah

Introduction to Mathematical Finance
 MATH 5760/6890 - Section 001 - Fall 2023
 Homework 6
 The Binomial Pricing Model

Due: Tuesday, Oct 31, 2023

Submit your homework assignment on Canvas via Gradescope.
1.) Consider an $n=100$-period Binomial Pricing Model with $(p, u, d)=(0.35,1.2,0.9)$ and an initial value of $S_{0}=100$.
(a) What is the maximal value of S_{100} under this model? The minimial value?
(b) Compute the probability that $S_{100} \geq 100$.
2.) Let $X \sim \operatorname{Bernoulli}(p)$, and let $\left\{X_{i}\right\}_{i=1}^{n}$ be n iid copies of X. Let $Y=\sum_{i=1}^{n} X_{i} \sim$ $\operatorname{Binomial}(n, p)$. Throughout this problem, let $a>0$ be a deterministic constant.
(a) Compute $\mathbb{E} a^{X}$ with $a>0$ a deterministic constant.
(b) If V and W are two independent random variables, then $\mathbb{E}(V W)=(\mathbb{E} V)(\mathbb{E} W)$. Use this to compute $\mathbb{E} a^{Y}$.
(c) Compute the variance of a^{Y}.
(d) Apply these facts to the Binomial Pricing Model with parameters (p, u, d) : with $S_{n}=S_{0} e^{L}$, where $L=\sum_{i=1}^{n} L_{i}=\sum_{i=1}^{n} \log G_{i}$ is the log-return, show that,

$$
\begin{aligned}
\mathbb{E} \frac{S_{n}}{S_{0}} & =(p u+(1-p) d)^{n} \\
\operatorname{Var} \frac{S_{n}}{S_{0}} & =\left(p u^{2}+(1-p) d^{2}\right)^{n}-(p u+(1-p) d)^{2 n}
\end{aligned}
$$

3.) Consider an n-period Binomial Pricing Model for an asset over the time interval $t \in[0, T]$ with $d=1 / u<1$. (This is a special type of recombination condition.) Suppose that from historical data we compute a T-time expected return rate r for the asset:

$$
\mathbb{E} S_{n}=S_{0}(1+r),
$$

where r is a deterministic, positive constant $r>0$.
(a) Show that the expected value of the gross return, $\mathbb{E} \frac{S_{n}}{S_{0}}$, is given by $(p u+(1-p) / u)^{n}$.
(b) Show that in order for S_{n} under the given binomial pricing model to achieve an expected gross return rate $(1+r)$, then u must satisfy,

$$
u=\frac{1}{2 p}\left(e^{\mu} \pm \sqrt{e^{2 \mu}-4 p(1-p)}\right),
$$

where $\mu=\frac{\log (1+r)}{n}$.
(c) Show that $e^{2 \mu}>4 p(1-p)$, and hence there are always two real values of u above.
(d) Show that if we choose the minus option in formula with \pm above, then $u<1$, and hence the only valid choice is the plus option.

