# Department of Mathematics, University of Utah 

# Introduction to Mathematical Finance <br> MATH 5760/6890 - Section 001 - Fall 2023 <br> Homework 6 Solutions <br> The Binomial Pricing Model 

Due: Tuesday, Oct 31, 2023

Submit your homework assignment on Canvas via Gradescope.
1.) Consider an $n=100$-period Binomial Pricing Model with $(p, u, d)=(0.35,1.2,0.9)$ and an initial value of $S_{0}=100$.
(a) What is the maximal value of $S_{100}$ under this model? The minimial value?
(b) Compute the probability that $S_{100} \geq 100$.

## Solution:

(a) The maximum value of $S_{100}$ corresponds to 100 instances of the inter-period gross return rate being $u=1.2$. The corresponding value would be,

$$
S_{100}=100(1.2)^{100}=8.28 \times 10^{9}
$$

Similarly, the minimal value corresponds to 100 instances of $d=0.9$ as the interperiod gross return:

$$
S_{100}=100(0.9)^{100}=2.66 \times 10^{-3}
$$

(b) Since $100=S_{0}$, then the question is identical to determining the probability that $S_{n} \geq S_{0}$. Note that the gross return is given by,

$$
\frac{S_{n}}{S_{0}}=u^{Y} d^{100-Y}
$$

where $Y \sim \operatorname{Binomial}(100,0.35)$. By direct computation, we find that

$$
u^{3} 6 d^{100-36}<1, \quad u^{3} 7 d^{100-37}>1
$$

Therefore,

$$
\operatorname{Pr}\left(\frac{S_{n}}{S_{0}} \geq 1\right)=\operatorname{Pr}(Y \geq 37)
$$

Hence, we need to compute this probability for a $\operatorname{Binomial}(100,0.35)$ random variable. Since,

$$
\operatorname{Pr}(Y=k)=\binom{100}{k} 0.35^{k}(1-0.35)^{100-k}
$$

then,

$$
\operatorname{Pr}\left(\frac{S_{n}}{S_{0}} \geq 1\right)=\sum_{k=37}^{100}\binom{100}{k} 0.35^{k}(1-0.35)^{100-k} \approx 0.373 .
$$

2.) Let $X \sim \operatorname{Bernoulli}(p)$, and let $\left\{X_{i}\right\}_{i=1}^{n}$ be $n$ iid copies of $X$. Let $Y=\sum_{i=1}^{n} X_{i} \sim$ $\operatorname{Binomial}(n, p)$. Throughout this problem, let $a>0$ be a deterministic constant.
(a) Compute $\mathbb{E} a^{X}$ with $a>0$ a deterministic constant.
(b) If $V$ and $W$ are two independent random variables, then $\mathbb{E}(V W)=(\mathbb{E} V)(\mathbb{E} W)$. Use this to compute $\mathbb{E} a^{Y}$.
(c) Compute the variance of $a^{Y}$.
(d) Apply these facts to the Binomial Pricing Model with parameters $(p, u, d)$ : with $S_{n}=S_{0} e^{L}$, where $L=\sum_{i=1}^{n} L_{i}=\sum_{i=1}^{n} \log G_{i}$ is the log-return, show that,

$$
\begin{aligned}
\mathbb{E} \frac{S_{n}}{S_{0}} & =(p u+(1-p) d)^{n} \\
\operatorname{Var} \frac{S_{n}}{S_{0}} & =\left(p u^{2}+(1-p) d^{2}\right)^{n}-(p u+(1-p) d)^{2 n}
\end{aligned}
$$

## Solution:

(a) Since $X$ has distribution,

$$
X= \begin{cases}1, & \text { with probability } p \\ 0, & \text { with probability } 1-p,\end{cases}
$$

then we can directly compute,

$$
\mathbb{E} a^{X}=p a^{1}+(1-p) a^{0}=p a+1-p .
$$

(b) We write $a^{Y}$ as,

$$
a^{Y}=a^{\sum_{j=1}^{n} X_{j}}=\prod_{j=1}^{N} a^{X_{j}}
$$

Using the independent property mentioned in the problem, and since the $\left\{X_{j}\right\}_{j=1}^{n}$ are independent, we have,

$$
\mathbb{E} a^{Y}=\prod_{j=1}^{n} \mathbb{E} a^{X_{j}}=\left(\mathbb{E} a^{X}\right)^{n}
$$

where the last equality uses the fact that $\left\{X_{j}\right\}_{j=1}^{n}$ and $X$ are identically distributed. Using this along with part (a), we have:

$$
\mathbb{E} a^{Y}=(p a+1-p)^{n}
$$

(c) Letting $\mu=\mathbb{E} a^{Y}$ (which we computed above), we write the variance as,

$$
\begin{aligned}
\operatorname{Var} a^{Y} & =\mathbb{E}\left(a^{Y}-\mu\right)^{2} \\
& =\mathbb{E}\left(a^{Y}\right)^{2}-2 \mathbb{E}\left(\mu a^{Y}\right)+\mu^{2} \\
& =\mathbb{E}\left(a^{Y}\right)^{2}-2 \mu^{2}+\mu^{2} \\
& =\mathbb{E}\left(a^{2}\right)^{Y}-\mu^{2} .
\end{aligned}
$$

We already have an expression for $\mu$; to compute the expression for the first term, we note that it's the same as $\mathbb{E} a^{Y}$, but with the replacement $a \leftarrow a^{2}$. Therefore, we have:

$$
\operatorname{Var} a^{Y}=\left(p a^{2}+1-p\right)^{n}-(p a+1-p)^{2 n}
$$

(d) For the Binomial Pricing Model, recall that the $\log$-return $L_{j}$ for time-step $j$ is,

$$
L_{j}= \begin{cases}\log u, & \text { with probability } p \\ \log d, & \text { with probability } 1-p\end{cases}
$$

Hence, $L_{j}$ can be written as,

$$
L_{j}=\log d+X_{j}(\log u-\log d)=\log d+X_{j} \log \frac{u}{d}
$$

where $X_{j} \sim \operatorname{Bernoulli}(p)$. In particular, this implies that

$$
\begin{aligned}
e^{L}=e^{\sum_{j=1}^{n} L_{j}} & =e^{n \log d+\log \frac{u}{d} \sum_{j=1}^{n} X_{j}} \\
& =d^{n}\left(e^{\log \frac{u}{d}}\right)^{\sum_{j=1}^{n} X_{j}} \\
& =d^{n}\left(\frac{u}{d}\right)^{Y}
\end{aligned}
$$

Then using the results from the previous parts with $a=\frac{u}{d}$, along with $\mathbb{E} c W=c \mathbb{E} W$ and $\operatorname{Var}(c W)=c^{2} \operatorname{Var} W$ for a constant $c$, we have:

$$
\begin{aligned}
\mathbb{E} e^{L} & =d^{n}\left(p \frac{u}{d}+1-p\right)^{n}=(p u+(1-p) d)^{n} \\
\operatorname{Var} e^{L} & =d^{2 n}\left[\left(p \frac{u^{2}}{d^{2}}+1-p\right)^{n}-\left(p \frac{u}{d}+1-p\right)^{2 n}\right] \\
& =\left(p u^{2}+(1-p) d^{2}\right)^{n}-(p u+(1-p) d)^{2 n},
\end{aligned}
$$

as desired.
3.) Consider an $n$-period Binomial Pricing Model for an asset over the time interval $t \in[0, T]$ with $d=1 / u<1$. (This is a special type of recombination condition.) Suppose that from historical data we compute a $T$-time expected return rate $r$ for the asset:

$$
\mathbb{E} S_{n}=S_{0}(1+r),
$$

where $r$ is a deterministic, positive constant $r>0$.
(a) Show that the expected value of the gross return, $\mathbb{E} \frac{S_{n}}{S_{0}}$, is given by $(p u+(1-p) / u)^{n}$.
(b) Show that in order for $S_{n}$ under the given binomial pricing model to achieve an expected gross return rate $(1+r)$, then $u$ must satisfy,

$$
u=\frac{1}{2 p}\left(e^{\mu} \pm \sqrt{e^{2 \mu}-4 p(1-p)}\right)
$$

where $\mu=\frac{\log (1+r)}{n}$.
(c) Show that $e^{2 \mu}>4 p(1-p)$, and hence there are always two real values of $u$ above.
(d) Show that if we choose the minus option in formula with $\pm$ above, then $u<1$, and hence the only valid choice is the plus option.

## Solution:

(a) We have that

$$
\frac{S_{n}}{S_{0}}=\prod_{j=1}^{n} G_{j},
$$

where $G_{j}$ is a shifted Bernoulli random variable:

$$
G_{j}= \begin{cases}u, & \text { with probability } p, \\ \frac{1}{u}, & \text { with probability } 1-p\end{cases}
$$

Hence, taking expectations and noting that the $G_{j}$ are independent, we have,

$$
\mathbb{E} \frac{S_{n}}{S_{0}}=\mathbb{E}\left(\prod_{j=1}^{n} G_{j}\right)=\prod_{j=1}^{n} \mathbb{E} G_{j}=\prod_{j=1}^{n}(p u+(1-p) / u)=\left(p u+\frac{1-p}{u}\right)^{n},
$$

as desired.
(b) We have computed the expected gross return rate in the previous part, and this must match $(1+r)$ :

$$
\left(p u+\frac{1-p}{u}\right)^{n}=1+r,
$$

Raising both sides to the $1 / n$ power (and using the definition of $\mu$ ) yields,

$$
p u+\frac{1-p}{u}=e^{\mu} .
$$

Multiplying by $u$ on both sides yields the quadratic condition:

$$
p u^{2}-e^{\mu} u+(1-p)=0 .
$$

The two roots of this equation are found from the quadratic formula:

$$
u=\frac{1}{2 p}\left(e^{\mu} \pm \sqrt{e^{2 \mu}-4 p(1-p)}\right),
$$

which is the desired formaula.
(c) Since $r>0$, then $\mu=\frac{1}{n} \log (1+r)>0$. Since $\mu$ is positive, this subsequently implies that $e^{2 \mu}>1$. On the other hand, if we consider the function,

$$
g(p)=4 p(1-p),
$$

over the interval $p \in[0,1]$, then its extrema occur either at the endpoints, $p=0,1$, or at critical points, $p=1 / 2$. The values of $g$ at these candidate extrema are,

$$
g(0)=g(1)=0, \quad g(1 / 2)=1,
$$

and hence we have,

$$
0 \leq g(p) \leq 1, \quad p \in[0,1] .
$$

Therefore:

$$
e^{2 \mu}>1 \geq g(p),
$$

i.e.,

$$
e^{2 \mu}>4 p(1-p),
$$

as desired, which implies that our formula for $u$ corresponds to two distinct real values.
(d) If we choose the "minus" option for $u$, i.e.,

$$
u=\frac{1}{2 p}\left(e^{\mu}-\sqrt{e^{2 \mu}-4 p(1-p)}\right),
$$

then we seek to show the inequality,

$$
\frac{1}{2 p}\left(e^{\mu}-\sqrt{e^{2 \mu}-4 p(1-p)}\right)<1
$$

To determine if this inequality is true, our first step is to rearrange it to the equivalent inequality,

$$
\begin{equation*}
e^{\mu}-2 p<\sqrt{e^{2 \mu}-4 p(1-p)} . \tag{1}
\end{equation*}
$$

Note that naively squaring both sides of the inequality is not a valid operation unless $\left|e^{\mu}-2 p\right|<\sqrt{e^{2 \mu}-4 p(1-p)}$. (I.e., $-2<1$ does not imply that $(-2)^{2}<1^{2}$.). Hence, we must verify,

$$
\left|e^{\mu}-2 p\right|<\sqrt{e^{2 \mu}-4 p(1-p)} \Longleftrightarrow\left(e^{\mu}-2 p\right)^{2}<e^{2 \mu}-4 p(1-p),
$$

where we have used the fact that $e^{2 \mu}-4 p(1-p)>0$ from part (c). By expanding the quadratic term and simplifying, this last inequality is,

$$
-4 p e^{\mu}+4 p^{2}<-4 p+4 p^{2} \Longleftrightarrow e^{\mu}>1
$$

which we have already established. Hence $\left|e^{\mu}-2 p\right|<\sqrt{e^{2 \mu}-4 p(1-p)}$ is true, and therefore we may square both sides of (1) to obtain the following inequality that is equivalent to our desired one,

$$
\left(e^{\mu}-2 p\right)^{2}<e^{2 \mu}-4 p(1-p),
$$

but we have already shown that this is equivalent to $e^{\mu}>1$, which is already established. Therefore, we indeed have $u<1$ by choosing the "minus" option, and so the "plus" choice is the only valid choice.

