
Department of Mathematics, University of Utah
Introduction to Mathematical Finance

MATH 5760/6890 – Section 001 – Fall 2023
Homework 3 Solution

2-security Markowitz portfolios

Due: Tuesday, Sept 19, 2023

Submit your homework assignment on Canvas via Gradescope.

1.) (Markowitz 2-security portfolios) Consider a 2-security portfolio having per-unit asset
prices S1(t) and S2(t). Assume the following statistics for these assets:

S1(0) = 100 (with probability 1) ES1(1) = 110,
√

VarS1(1) = 20

S2(0) = 50 (with probability 1) ES2(1) = 75,
√

VarS2(1) = 40,

along with Cov(S1(1), S2(1)) = −500.

(a) Show that the return rates R of the individual securities in this setup have statistics,

ER(1) =

(
0.1
0.5

)
, CovR(1) =

(
0.04 −0.1
−0.1 0.64

)
(b) Compute the minimum-risk portfolio for a general expected return rate µP .

(c) On an expected return rate vs. risk figure, plot the set of optimal (minimum-risk)
portfolios and identify the efficient frontier.

(d) An investor seeks to utilize this optimized portfolio corresponding to the expected
return rate of µP = 15%. Would you recommend the corresponding portfolio to
this person?

Solution:

(a) We translate the given statistics into corresponding statistics for return rates. We
know that such portfolios have the return,

R(t) = ⟨w,R⟩ , Ri(t) =
Si(t)− Si(0)

Si(0)
,

for i = 1, 2, where w contains the unknown portfolio weights. Using standard
properties of first- and second-order statistics, we have:

µ1 = ER1(1) =
ES1(1)

S1(0)
− 1 = 0.1, σ1 =

√
VarR1(1) =

√
VarS1(1)

S1(0)
= 0.2,

µ2 = ER2(1) =
ES2(1)

S2(0)
− 1 = 0.5, σ2 =

√
VarR2(1) =

√
VarS2(1)

S2(0)
= 0.8

The covariance satisfies similar properties:

Cov(R1(1), R2(1)) = Cov

(
S1(1)

S1(0)
,
S2(1)

S2(0)

)
=

1

S1(0)S2(0)
Cov(S1(1), S2(1)) = −0.1.
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Hence, we have

µ = ER(1) =

(
0.1
0.5

)
, A = Cov(R(1)) =

(
0.22 −0.1
−0.1 0.82

)
,

as desired.

(b) The Markowitz portfolio optimization for this setup is,

min
w

wTAw subject to ⟨w,1⟩ = 1 and

⟨w,µ⟩ = µP

Since this is a 2-security portfolio, the two linear constraints will determine w
without optimization:

w1 + w2 = 1
0.1w1 + 0.5w2 = µP

}
=⇒ w =

(
w1

w2

)
=

1

4

(
5− 10µP

10µP − 1

)
=

1

4

[(
5
−1

)
+ µP

(
−10
10

)]
Hence, given µP , the weights above prescribe the optimal (minimal) risk portfolio.

(c) To identify the risk σ associated with the optimal portfolio, we compute the variance
of the optimal portfolio:

σ2
P = wTAw = 5.5µ2

P − 1.8µP + 0.165

Rearranging this equation yields,

σ2
P −

(√
11

2
µP − 0.9

√
2

11

)2

= 0.165− 0.81
2

11
=

39

2200
,

which in turn can be written as,

σ2

a2
− (µP − µ0)

2

b2
= 1, (a, b, µ0) =

(
1

10

√
39

22
,

√
39

110
,

9

55

)
.

Hence, this is the graph of a hyperbola with vertex at (σ, µP ) = (a, µ0) opening up
toward σ = ∞. The graph of the optimal portfolios is given below; the efficient
frontier is the upper half of this graph, corresponding to optimal expected return
rate for a given risk.
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(d) Our graph of the efficient frontier in the previous part reveals that µP = 0.15 does
not correspond to an efficient portfolio. In particular, the portfolio at µP = 0.15
is on the lower half of the hyperbola. An alternative efficient portfolio corresponds
to a portfolio mean located at a reflection of 0.15 around µ0 = 9/55. (I.e., the
symmetric point located on the efficient frontier portion of the hyperbola.) Hence,
an investor should prefer a portfolio having expected return,

µP = µ0 + (µ0 − 0.15) ≈ 0.177 > 0.15,

because the corresponding optimal portfolio has the same risk σP as the 15% ex-
pected return portfolio, but has higher expected return.

2.) (Arbitrage in portfolios) Consider a 2-security portfolio consisting of asset 1 and asset
2. Assume the time-1 asset return rates R1 and R2 have mean and standard deviation
(µ1, σ1) and (µ2, σ2), respectively. Assume that σ1+σ2 > 0, i.e., that at least one security
is random.

(a) Recall that the Pearson correlation coefficient between R1 and R2 is defined as
ρ := Cov(R1, R2)/(σ1σ2). If ρ = −1, explicitly construct a zero-risk portfolio using
a non-trivial linear combination of assets 1 and 2.

(b) Using the previous result, give a necessary and sufficient condition involving the
statistics above that ensures that an arbitrage, i.e., a riskless and (strictly positive)
profit strategy, exists.

(c) (Math 6890 students only) Extend part of this to the N -security case: Show
that if the covariance matrix of the individual security return rates is not positive-
definite, instead only of rank N − 1, then a riskless security can be constructed,
and provide (perhaps opaque but symbolically explicit) conditions on the security
statistics that ensure that this riskless security can be used for arbitrage. Your
conditions may involve eigenvalues/vectors of the covariance matrix.

Solution:
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(a) If ρ = −1, then the covariance matrix of R can be written as,

A := Cov(R) =

(
σ2
1 Cov(R1, R2)

Cov(R1, R2) σ2
2

)
ρ=−1
=

(
σ2
1 −σ1σ2

−σ1σ2 σ2
2

)
The risk of the portfolio is wTAw; since A is symmetric, then wTAw = 0 implies
that Aw = 0, i.e., that w is a vector in the nullspace of A. The explicit form of A
above shows that one such vector is given by,

w =

(
σ2
σ1

)
.

To make this vector a valid portfolio weight vector, we normalize appropriately:

w =
1

σ1 + σ2

(
σ2
σ1

)
,

whose components sum to unity (making it a valid portfolio weight) and is well-
defined since σ1 + σ2 > 0. Hence, this forms a zero-risk portfolio.

(b) In order for the portfolio identified in the previous part to be an arbitrage, its mean
must be strictly positive. The mean of the portfolio above is,

µP = ⟨µ,w⟩ = σ2µ1 + σ1µ2

σ1 + σ2
.

Since the denominator is positive, the number above is positive if and only if

σ2µ1 + σ1µ2 > 0.

(c) In the N -security case, if A = Cov(R) is not positive-definite, then there exists
some non-zero vector v such that,

Av = 0,

so that vTAv = 0. Note that since rank(A) = N − 1, then v is unique up to a
consatnt. In order to be able to normalize v so that it’s a valid portfolio weight
vector, we must have,

⟨v,1⟩ ≠ 0.

Assuming this, then

w :=
1

⟨v,1⟩
v,

is a valid portfolio weight vector corresponding to a riskless portfolio. This is the
only such portfolio since v is unique up to a constant. In order for it to be an
arbitrage, it must have positive mean:

µP = ⟨µ,w⟩ > 0,

where µ is the mean of the individual securities. Using the expressions we’ve derived
above, this is equivalent to:

⟨v,µ⟩
⟨v,1⟩

> 0, ⟨v,1⟩ ≠ 0

These are conditions that explicitly involve µ, and implicitly involve entries of the
second-order statistics Cov(R) since v is an eigenvector of Cov(R).
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3.) Consider a Markowitz 2-security portfolio with a given terminal time positive-definite
covariance Cov(R) and terminal time mean µ. Assume that,

µ1 = µ2.

(a) Show that any Markowitz portfolio must have expected return µP given by µP =
µ1 = µ2.

(b) For the covariance matrix,

Cov (R) =

(
2 −1
−1 2

)
,

compute both the optimal Markowitz portfolio and its corresponding risk.

Solution:

(a) For notational simplicity, we’ll let µ = µ1 = µ2. The weights of the portfolio must
satisfy,

w1 + w2 = 1

µw1 + µw2 = µP .

If µ = 0, then clearly µP = 0 = µ. If µ ̸= 0, then the second equation is equivalent
to,

w1 + w2 =
µP

µ
.

In order for this to be consistent with the first equation, we must have µP = µ.
(Otherwise the weight constraints are inconsistent and no valid portfolio exists.)
Hence, no matter what value of µ, we must have µP = µ.

(b) With our µ = µ1 = µ2 setup, then the two linear constraints on a Markowitz
portfolio are simply the single condition,

w1 + w2 = 1.

Hence, the squared risk of the portfolio with A = Cov(R) is,

σ2
P =

(
w1

1− w1

)T

A

(
w1

1− w1

)
= vT

0 Av0 +
(
2vT

0 Av1
)
w1 +

(
vT
1 Av1

)
w2
1,

where

v0 =

(
0
1

)
, v1 =

(
1
−1

)
.

We directly compute:

vT
0 Av0 = 2, 2vT

0 Av1 = −6, vT
1 Av1 = 6,

so the risk squared reads,

σ2
P = 6w2

1 − 6w1 + 2.
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Using univariate calculus to compute critical points, we conclude that the minimum
of σ2

P occurs when,

w1 =
1

2
=⇒ w =

(
0.5
0.5

)
.

The (minimal) squared risk for this value of w is,

σ2
P

∣∣
w1=0.5

=
1

2
.

Hence, the minimal squared risk is 1√
2
.
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