# Department of Mathematics, University of Utah <br> Introduction to Mathematical Finance MATH 5760/6890 - Section 001 - Fall 2023 <br> Homework 1 <br> Simple valuations 

Due: Tuesday, Sept 5, 2023

Submit your homework assignment on Canvas via Gradescope.
1.) (Loan valuation) Suppose the (annual) interest rate for a loan is currently $3 \%$ for a loan term of 3 years, and the interest will compound monthly. You estimate that you will be able to afford a maximum monthly payment of $\$ 300$ over the loan term. What is the maximum loan amount you can take out and still afford the monthly payments?
2.) (Bond valuation) Bonds are priced based on today's present value of the instrument; the "face value" of a bond is the amount paid to the bearer at expiry of the bond's term ("maturity"). In the simplest setting, the price is based on the sum of two things: (i) the present value of the face value of the bond (which is received at maturity), (ii) the present value of an annuity ("coupon payment") paid to the holder at regular intervals; the payment per period equals the face value times the "coupon/interest rate" (prorated from a quoted annual rate). The "yield to maturity" is an assumed (annual) interest rate on which the present value is discounted from future value.
(a) Determine the price of the following bond: A bond with a face value of $\$ 1000$ with a maturity term of 2 years and a coupon rate of $4 \%$. The coupon payments are made semiannually (i.e., twice a year at $\$ 20$ per payment) until the bond matures. Throughout, assume a discount rate ("yield to maturity") of $3 \%$.
(b) "Par" refers to a bond face value. Is the bond in part (a) priced below, at, or above par?
(c) (6890 students only) Prove in general that if the yield to maturity equals the coupon rate, then the present value of the bond is exactly par.
3.) (Arbitrage) Thingamabobs currently sell for $\$ 50$ each. Today there is an opportunity to enter into a forward contract where a buyer agrees to purchase $x$ thingamabobs $(x \geq 1$, $x$ an integer) from you exactly 1 year from now. The buyer will purchase the first one for $\$ 100$, but subsequent ones will be discounted: The cumulative delivery price $K$ for $x$ thingamabobs is

$$
K=100 x\left(\frac{9}{10}\right)^{(x-1)} .
$$

Your bank has agreed to extend you a loan of up to $\$ 500$ with an annual interest rate of $2 \%$, compounded annually. Assume no other costs, and that the specified bank loan and forward contract are the only possible actions.
(a) Identify all arbitrage policies with terms of 1 year.
(b) Identify the arbitrage policy with the maximum profit.
4.) (Simple options) A call option is a contract between a buyer and seller that entitles the buyer the right (but not the requirement) to purchase a fixed amount of stock shares at a specified, "strike" price: The buyer agrees to pay the seller a premium today, which gives the buyer the right to force the seller to sell the shares at the strike price anytime between today and the expiry term of the option. (Hence, the sale completes based on today's agreed upon strike price, not based on market price on the day of the sale.) Assume that the buyer exercises the option only at expiry (not before), and only if it is a rational choice (i.e,. only if the market price at expiry is greater than the strike price).
(a) In entering this contract, briefly explain what the buyer hopes will happen to the future stock price (and why), and what the seller hopes will happen (and why).
(b) Let ABC be a stock selling on the market today for $\$ 50$ per share. Suppose a call option premium is $\$ 10$ for a single share of ABC at strike price $\$ 60$. Plot the buyer's profit as a function of ABC's expiry share price.
(c) Consider a put option, in which the seller pays a premium to gain the right (but not the requirement) to sell stock to the buyer at the strike price. With the same parameters and rational acting as in the previous part, plot the seller's profit as a function of ABC's expiry share price.

