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Alternation

Alternating methods solve an optimization problem by cycling through certain
optimization sub-problems.

One can alternate in terms of
– Objective components/sub-components
– Constraint sets
– Variable components
– Data (e.g., SGD)

Our tour will take us through:
– Coordinate descent
– Bregman methods
– Alternating direction method of multipliers
– Alternating projections
– Proximal methods
– Majorize-minimization/Minorize-maximization
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Convex feasibility, I

Consider a simple problem: Given a convex set C Ä n and x R C, compute

PCx “ argmin
yPC

}y ´ x}2.

If C is “nice enough”, one can compute explicit solutions, even in somewhat
complicated cases.
(E.g., suppose C is the convex cone of positive semi-definite matrices.)

There are more complicated cases when it’s not so easy, even if C is convex.
(E.g., suppose C is the convex cone of non-negative polynomials of degree n on a
bounded interval.)

In many cases, even the substantially relaxed problem simply regarding feasibility is
enough to consider: Compute any x satisfying x P C.
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Convex feasibility, II

A prototypical case when C is defined as the intersection of many other convex sets,

C “
M£

m“1

Cm.

The assumption is that projecting onto C is “hard”, but onto any Cm is “easy”.

More pedantically, the projection operator PC is not computable, but PCm for any
m is computable.

Example
A simple, important example: linear feasibility Ax § b.

This constraint is an intersection of half-spaces.
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A basic alternating method

First some motivation: assume M “ 2 sets.

A fundamental result that motivates an iterative algorithm is the following:

Theorem
Suppose that C1 and C2 are both subspaces of n. Then for any x,

lim
iÒ8

pPC2PC1qix “ PCx.

This result suggests an iterative algorithm in the general case, C “ XM
m“1Cm:

xk`1 “ PCipkqxk, ipkq “ 1 ` pk mod mq.

One can generalize the theorem above to M ° 2 subspaces:

Theorem
Suppose that Cm for all m are subspaces of n. Then for any x,

lim
kÒ8

xk “ PCx.
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Alternating projections rate of convergence

Unfortunately, alternating projections can be slow, even when specialized to
subpsaces.20 Chapter 3. The MAP on Subspaces

Figure 3.1. MAP for two subspaces.

In this way it generates a sequence of elements that converges to PM�Nx. The
practical usefulness of MAP is supported by the fact that, in general, it is easier
to compute the projection onto M and N separately than it is to compute the
projection onto M � N .

3.2 The von Neumann Theorem
We start with some basic concepts that will be frequently used in this section.

Definition 3.1. Let T be an operator which is defined over some subset S of H
and that has one or more values Tx in H corresponding to each element x of S.
We will call S the domain, D(T ), of T . We will call the set of all values Tx, x �
D(T), the range, R(T ), of T . Finally, the set of all elements (x,Tx), x � D(T), and
Tx � R(T) will be called the graph G(T) of T.

We observe that G(T ) � H � H which is also a Hilbert space (see Problem
(3.1)). Clearly, (x, y) � G(T ) means that x � D(T ), y � R(T ), and that Tx exists
and one of its values is y.

Definition 3.2. We will say that an operator T is linear if G(T ) is a linear
subspace of H � H.

We note that as every subspace contains the zero element, (0,0) is in the graph
of every linear operator.

Definition 3.3. An operator T is called single-valued (s.v.) if there is exactly one
value Tx associated with each element x in D(T).

Clearly, if T is s.v. and if (x, y) and (x, y�) are in G(T ), then y = y � = Tx.
Moreover, the usual definition of a continuous operator is meaningful only when T
is s.v.

Image: Escalente & Raydon, “Alternating Projection Methods”
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Alternating projections rate of convergence

Unfortunately, alternating projections can be slow, even when specialized to
subpsaces.

In particular, the following rate of convergence applies:

Theorem
Suppose that Cm for every m is a closed subspace of n. Then we have,

›››pPCM ¨ ¨ ¨PC1qi x ´ PCx
›››
2

§ ri }x ´ PCx}2 ,

where r † 1 depends on the angles between the subspaces tCmum.

In many “interesting” situations, the angles between subspaces are small, and r is
very close to 1.
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Dykstra’s Algorithm

If Cm are not subspaces, there is no guarantee of an alternating method’s
convergence to PC . (It could converge to any other feasible point.)

Dykstra’s algorithm is the following k-iterative procedure:

xk,0 “ xk´1,M

xk,m “ PCm pxk,m´1 ´ yk´1,mq ,
yk,m “ xk,m ´ xk,m´1 ` yk´1,m.

Above, there are two indices:
– k: The iteration index
– m: The constraint index

The new variables yk,m are “increments”, and are the key to fixing the problems
with standard alternating projections.
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Dykstra’s Algorithm

5.1. Dykstra’s Algorithm 57

Figure 5.1. von Neumann vs. Dykstra for Example 5.1, when (2, 1/2) is
the initial point.

Figure 5.2. von Neumann vs. Dykstra for Example 5.1, when (1, 3/2) is
the initial point.

Image: Escalente & Raydon, “Alternating Projection Methods”
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Convergence

Dykstra’s method is known to converge:

Theorem
Assume Cm for every m is closed and convex. Then for any x P n, the iterates of
Dykstra’s algorithm satisfy,

lim
kÒ8

}xk,m ´ PCx}2 “ 0,

for any m “ 1, . . . ,M .

In addition, convergence rates are known (linear) if Cm are half-spaces.
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Proximal methods

Proximal methods are a broad class of optimization approaches, largely revolving
around the proximal operator.

Suppose f is convex. The proximal operator of f is defined as the minimization
problem,

prox�,f pxq “ argmin
yP n

fpyq ` 1
2�

}y ´ x}22,

where � ° 0. 1.2. Interpretations 125

Figure 1.1: Evaluating a proximal operator at various points.

the extent to which the proximal operator maps points towards the
minimum of f , with larger values of � associated with mapped points
near the minimum, and smaller values giving a smaller movement to-
wards the minimum. It may be useful to keep this figure in mind when
reading about the subsequent interpretations.

We now briefly describe some basic interpretations of (1.1) that we
will revisit in more detail later. The definition indicates that proxf (v)
is a point that compromises between minimizing f and being near to
v. For this reason, proxf (v) is sometimes called a proximal point of v
with respect to f . In prox�f , the parameter � can be interpreted as a
relative weight or trade-o� parameter between these terms.

When f is the indicator function

IC(x) =

�
�

�
0 x � C
+� x �� C,

Image: Parikh & Boyd, “Proximal Algorithms”A. Narayan (U. Utah – Math/SCI) Alternation



Proximal methods
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problem,

prox�,f pxq “ argmin
yP n

fpyq ` 1
2�

}y ´ x}22,

where � ° 0.

The proximal operator compromises minimizing f and staying close to x.

The parameter � controls this compromise.

The proximal operator is essentially a penalized trust region optimization, or a
Tikhonov regularized problem.

Example
Let C be a convex set, and let f be the indicator function on C:

fpxq “
"

0, x P C
8, x R C

Then proxf,�pxq “ PCx.A. Narayan (U. Utah – Math/SCI) Alternation



The proximal operator

prox�,f pxq “ argmin
yP n

fpyq ` 1
2�

}y ´ x}22,

We have x “ prox�f pxq if and only if x minimizes f .

Proximal methods are related to gradient descent. I.e.,

fpxq « fpx0q ` rfpx0qT px ´ x0q ùñ prox�,f px0q « x0 ´ �rfpx0q

Proximal optimization algorithms use the proximal operator as intermediate steps in
a procedure.

Of course, this is most useful when the proximal operator is easily (explicitly?)
computable.

The proximal operator is useful since
– Even if f is non-smooth, the proximal optimization objective has one portion

that is smooth.
– For surprisingly complicated f , the proximal operator is explicitly computable.
– The proximal operator can be used to generate alternating algorithms.
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Proximal operator and separability

One key fact we will use is the following:

Suppose f is convex, and separable, i.e.,

fpxq “
nÿ

i“1

fipxiq, x “ px1, . . . , xnq P n.

Then

v “ prox�f pxq, vi “ prox�fi
pxiq,

i.e., separability extends to the proximal operator.
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The proximal operator and gradient flow

The proximal operator is exactly a backward Euler time discretization for gradient
flow.

d
dt

xptq “ ´rfpxq.

Backward Euler is the iterated discretization,

xpk`1q “ xpkq ´ hrf
´
xpk`1q

¯
.

Interestingly, we can show,

xpk`1q “ proxhf pxpkqq.

I.e., iterated proximal optimization accomplishes discretized gradient flow.
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The proximal operator

The proximal operator,

prox�,f pxq “ argmin
yP n

fpyq ` 1
2�

}y ´ x}22,

can be explicitly computed in some cases:
– f is a scalar function of a scalar variable. E.g., fpxq “ |x|. (“Soft

thresholding”)
– `1, `2, `8 norms
– Matrix-domain functions: the singular value and eigenvalue map
– Matrix norms: nuclear norm, spectral norm, Frobenius norm
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To algorithms

The basic proximal minimization algorithm is simply,

xpk`1q “ prox�fx
pkq.

Convergence of xpkq to the set of minimizers, and convergence of fpxkq to the
optimal value is guaranteed.

One can also vary � at every step,

xpk`1q “ prox�kf
xpkq,

and assuming
∞

k �k “ 8, then convegence is still guaranteed.
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Alternating algorithms

If we generalize proximal methods to an alternating approach, several algorithms
can be interpreted as instances of proximal algorithms.

– Alternating projections
– Augmented Lagrangian methods
– ADMM

In turn, proximal algorithms can themselves be interpreted as examples of
– fixed point iteration
– majorization-minimization algorithms
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