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Alternation

Alternating methods solve an optimization problem by cycling through certain
optimization sub-problems.

One can alternate in terms of
– Objective components/sub-components
– Constraint sets
– Variable components
– Data (e.g., SGD)

Our tour will take us through:
– Coordinate descent
– Bregman methods
– Alternating direction method of multipliers
– Alternating projections
– Proximal methods
– Majorize-minimization/Minorize-maximization
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A starting point: linear systems

We first consider solving a square, linear system:

Ax “ b, A P nˆn

One historical approach to solving such a potentially large system without direct
inversion is the Gauss-Seidel method.

First decompose A into its lower-triangular and strictly upper-triangular
components:

A “ L ` U, L “

¨
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Gauss-Seidel

A “ L ` U

The Gauss-Seidel method is an iterative approach. Let x
pkq denote the kth iterate.

Gauss-Seidel updates via,

x
pk`1q “ L

´1pb ´ Ux
pkqq.

The process is repeated, and convergence is understood. (E.g., if A is diagonally
dominant.)

What is Gauss-Seidel doing? Note row j of this equation takes the form,

aj1x1 ` aj2x2 ` ¨ ¨ ¨ ` ajnxn “ bn.

The Gauss-Seidel version of this equation is,

aj1x
pk`1q
1 ` aj2x

pk`1q
2 ` ¨ ¨ ¨ ` ajjx

pk`1q
j ` aj,j`1x

pkq
j ` ¨ ¨ ¨ ` ajnx

pkq
n “ bn.

Solving these for all j can be accomplished via forward substitution:
– Solve row 1 for x1 (xj , j • 2 from previous iteration)
– Solve row 2 for x2 (x1 from previous step, xj j • 3 from previous iteration)
– Solve row 3 for x3 (x1, x2 from previous step, xj j • 4 from previous iteration)
– . . .

I.e., this process cycles through equations, where each step is a one-dimensional
problem by fixing all other variables.
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Coordinate descent

For optimizing scalar functions, the same principle, cycling through individual
variables for “lower-level” optimization problems, is the basic idea behind coordinate
descent.

min
xPS

fpxq, fpxq “ fppx1, x2, . . . , xnqq.

Coordinate proceeds by iteratively solving subproblems. Start with an initial iterate
x

p0q, set k “ 0.

x
pk`1q
1 “ arg min

x1

fpx1, x
pkq
2 , . . . , x

pkq
n q

x
pk`1q
2 “ arg min

x2

fpxpk`1q
1 , x2, x

pkq
3 , . . . , x

pkq
n q

...

x
pk`1q
n “ arg min

xn

fpxpk`1q
1 , x

pk`1q
2 , . . . , x

pk`1q
n´1 , xnq

Then repeat, set k – k ` 1.
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Coordinate descent visualized

Image: Wikipedia, “Coordinate Descent” page.
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Coordinate descent discussion

Each subproblem is generally much easier to solve than the full problem.

There are several variants of coordinate descent:
– We have described the determinstic cyclic approach
– Randomized descent (descent direction uniformly sampled at random each

step)
– Block coordinate descent (subproblems over more than 1 component variable)
– Minimization is algorithmically not performed exactly at each step, but instead

approximately solved, e.g., by taking a single gradient descent step.
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Coordinate descent convergence

Coordinate descent converges under some assumptions.

Theorem
Assume f is smooth and convex and that f˚ is the value of a minimum. Then

fpxpkqq ´ f˚ À 1
k

.

If f is strongly convex (with respect to the Euclidean norm), then

fpxpkqq ´ f˚ À r
k
, r P p0, 1q.
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Bad examples of coordinate descent, I

Unfortunately, in general some smoothness is required.

Without smoothness, one can easily come up with bad examples.

Image: Wikipedia, “Coordinate Descent” page.
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Bad examples of coordinate descent, II

In particular: consider a deterministic cyclic coordinate descent.
– If f is smooth and convex and a full cycle through all n variables does not

change the iterate, we are at a local minimum (becuase rf “ 0).
– If f is not smooth but still convex, and again a full cycle through all n

variables does not change the iterate, there is no guarantee we are at a local
minimum (coordinatewise minimization is not sufficient for stationarity).

– If f is convex and “part” of it is smooth, then coordinate-wise minimality
implies global minimality.
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Usage of coordinate descent

Coordinate descent is frequently used for optimizing non-smooth objectives of the
form:

fpxq “ gpxq ` hpxq,

hpxq “
nÿ

i“1

hipxiq,

where g is smooth (and frequently convex) and h is convex but not smooth.

Such functions h are called separable.

For example, the LASSO optimization in Lagrangian form,

min
x

1
2

}Ax ´ b}2
2 ` �}x}1

I.e., the `1 norm is separable. Also separable: box constraints via penalization.

Separable (and/or block separable) objectives are popular in sparse approximation,
model/variable selection, kompressed sensing, and (group-)sparse regularization.
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Adaptive coordinate descent

There are many variants of coordinate descent. E.g., adaptive coordinate descent
attempts to rotate variables via a empirical covariance matrix to decorrelate
variables.

a) Principal Component Analysis

b) Adaptive Encoding Update
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c) Coordinate Descent Method

d) Adaptive Coordinate Descent Method

Figure 1: AECMA-like Adaptive Encoding Update (b) mostly based on Principal Component Analysis (a) is used to extend
some Coordinate Descent method (c) to the optimization of non-separable problems (d). See text for details.

than the original one, make it reasonable to explicitly exploit
this property in search.

��� &RRUGLQDWH 'HVFHQW E\ 'LFKRWRP\
Coordinate Descent (CD) is probably one of the oldest

multidimensional optimization method. It became espe-
cially popular in numerical linear algebra under the name
of Gauss-Seidel method for solving systems of linear equa-
tions. In Evolutionary Computation community, when used
for optimization, this method is called Coordinate Strategy
[14]. CD is based on the idea that an n-dimensional opti-
mization problem can be decomposed into n one-dimensional
sub-problems. Each variable is updated in turn, while all
other variables remain fixed, by solving a one-dimension
optimization sub-problem using any suitable one-dimension
optimization algorithm. Note that CD can be viewed as a
special case of Block Coordinate Descent, that partitions the
coordinates into N blocks: f is iteratively optimized with
respect to one of the coordinate block while other coordi-
nates are fixed [15]. Obviously, it is reasonable to use CD
when dealing with unimodal separable problems.

����� $GDSWLYH 'LFKRWRP\
One of the simplest one-dimension optimization algorithm

to use is a dichotomy method (inspired by the bisection
method to find a zero of a given function). Let us consider
an interval [a, b] where the optimum is known to lie, and as-
sume that the value of the objective function f is known at
the center m = a+b

2 of the interval. Evaluate the two points

X1 = m� (b�a)
4 and X2 = m+ (b�a)

4 , centers of the left and
right parts of [a, b]. If f is unimodal, only three cases are
possible: X1 is better than m and X2, X2 is better than m

and X1, or both X1 and X2 are worse than m (if X1 and X2

are both better than m, then the problem is multimodal).
If X1 is better than m and X2, then the optimum lies

in the interval [a, m): replace b with m and m with X1.
Similarly, if X2 is better than m and X1, replace a with
m and m with X2. Finally, if X1 and X2 are worse than
m, then the optimum lies in the interval (X1, X2): replace a

with X1 and b with X2. In all 3 cases, we end up with a new

interval [a, b] which contains the optimum, whose length is
half that of the original [a, b], and for which we know the
value of f at its center.

When dealing with multi-dimensional problems, dichotomy
steps can be achieved on each coordinate successively: Fig-
ure 1.(c) illustrates the 2D-case and displays an example of
one dichotomy step in each direction.

Another point of view on the dichotomy method is to con-
sider it as a derandomized (1 + 2) � ES algorithm with
step-size adaptation: Assuming the current step-size is �

and current solution is m, the basic step of the dichotomy
method described above generates 2 o�spring X1 and X2 in
a deterministic way. The best of m, X1, and X2 becomes
the next parent, and � is divided by 2. In the case of one-
dimensional unimodal problems, if the initial interval con-
tains the global optimum, this algorithm will find it. Simi-
larly, in the case of multi-dimensional unimodal problems, if
the initial rectangle contains the global optimum, the algo-
rithm will find it, either by running the dichotomy method
on each coordinate up to a given precision, or by alternating
one step of the dichotomy method in each direction in turn.
Fig. 2.(a) shows the result of such an optimization of the
Sphere function f(x) = �x�2 starting from the initial point
X0 = (�3.1, �4.1). Dichotomy proceeds for 20 iterations
for the first coordinate and then for 20 iterations for the
second coordinate, reaching the target function value 10�10

after 80 evaluations. Exactly the same result is obtained by
cyclically repeating this procedure over each coordinate in
turn, as shown on Fig. 2.(b). The second variant, however,
seems to be more robust if the problem is not perfectly sep-
arable, exploring a larger region of the search space rather
than rapidly reducing one dimension to a single value.

However, if the optimum lies outside the initial interval,
or if the interval is somehow transformed after a rotation of
the coordinate system (e.g., due to Adaptive Encoding, see
Section 2.3), it might be necessary to allow more exploration
in case of successful sampling (one o�spring was better than
the parent m). Such dichotomy method with step-size (in-
terval) adaptation will be called Adaptive Dichotomy (AD),
and works as follows: Generate two o�spring X1 and X2 as

887

Image: Loshchilov et al, “Adaptive coordinate descent”.
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Bregman methods

Bregman methods excel at solving optimization problems of the form,

min
xP n

fpxq ` gpxq,

where fpxq is a convex non-smooth “`1”-type regularization term, and gpxq is a
convex (and typically smooth) data misfit term.

A common example is regularized basis pursuit problem:

min
xP n

}x}1 ` �

2
}Ax ´ b}2

2,

or total variation regularization for reconstruction of an image u,

min
u

}ru}1 ` �

2
}Hu ´ f}2

2.
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Subgradients

To introduce Bregman methods, we need the concept of subdifferentials, which
quantify notions of descent for non-smooth convex functions.

Given a continuous, convex function f : n Ñ , a subgradient of f at a point x0

is any d P n such that for all x,

fpxq ´ fpx0q • dT px ´ x0q,

i.e., it is any direction for which a linear approximation is a lower bound on the
function value.

The set Bfpx0q of all subgradients of f at x0 is the subdifferential of f at x0.

The subdifferential at x0 is a closed, convex set.

The subdifferential Bfpx0q is a singleton in n if and only if f is differentiable.

With f provided, the Bregman distance between points x, x0 P n is

Ddpx, x0q “ fpxq ´ pfpx0q ` d
T px ´ x0qq,

i.e., it is the “subgradient gap” in the direction d.
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The Bregman algorithm

min
xP n

fpxq ` gpxq,

The basic Bregman algorithm proceeds as follows: with x0 an initial guess and
d0 P Bfpx0q.

Set k “ 0.
1. Solve

xk`1 “ arg min
x

Ddk px, xkq ` gpxq.

This is frequently approximately solved, e.g., via descent methods.
2. Update the subgradient,

dk`1 “ dk ´ rgpxk`1q P Bfpxk`1q.

3. k – k ` 1 and iterate
One way to interpret the Bregman method: descend on g without going too far (in
the f -Bregman sense) from the starting point.
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Bregman method properties

The Bregman algorithm has some nice properties.

For example, if g is smooth and f satisfies certain weak continuity conditions, then

gpxk`1q § gpxkq.

Recall that g is frequently a (smooth) data misfit term.

Hence Bregman methods ensure monotone behavior of data misfit.

There are various generalizations of Bregman methods.

E.g., linearized Bregman methods linearize g at each step so that subproblems
frequently have explicit solutions.

One generalization that is relevant for us is the split Bregman method.
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Split Bregman, I

The split Bregman approach is an alternating algorithm.

We consider a special kind of objective,

min
x

}�pxq}1 ` gpxq,

where g is convex and smooth (typically g is a quadratic misfit), and � is convex
(e.g., affine).

Split Bregman first rewrites the problem as a constrained one:

min
x:�pxq“d

}d}1 ` gpxq,

and subsequently relaxes the constraint,

min
x,d

}d}1 ` gpxq ` �

2
}d ´ �pxq}2

2.

We can now define

fpxq “ }d}1 ` gpxq.
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Split Bregman, II

min
x,d

fpxq ` �

2
}d ´ �pxq}2

2, fpxq “ }d}1 ` gpxq

Split Bregman now essentially just applied “ordinary” Bregman to the above.

The algorithm is an alternating scheme by realizing that f is separable in pd, xq.
In addition, one introduces an augmented Lagrange variable b for the data misfit
term:

– Solve

uk`1 “ arg min
x

gpxq ` �

2
}dk ´ �pxq ´ bk}2

2

– Solve

dk`1 “ arg min
x

}d}1 ` �

2
}d ´ �pxk`1q ´ bk}2

2

– Solve

bk`1 “ bk ` �pxk`1q ´ dk`1

Split Bregman methods frequently perform well for non-smooth `1-type
regularization objectives.
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Alternating Direction Method of Multipliers (ADMM)

The ADMM algorithm combines advantages of dual ascent, and the method of
multipliers.

We’ve seen dual ascent before: consider

min
x

fpxq subject to Ax “ b.

By forming the Lagrangian,

Lpx, �q “ fpxq ` �
T pAx ´ bq,

then the dual function is the minimum.

f˚p�q “ min
x

Lpx, �q

And when there is zero duality gap, we solve the dual problem and recover the
primal solution,

�˚ “ max
�

f˚p�q, x˚ “ min
x

Lpx, �˚q.
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Alternating Direction Method of Multipliers (ADMM)

The ADMM algorithm combines advantages of dual ascent, and the method of
multipliers.

Dual ascent performs gradient ascent on the dual (maximization) problem.

In particular, the gradient of the dual problem is explicitly computable if the dual
problem f˚ is smooth.

In this case, the algorithm becomes,
– xk`1 “ arg minx Lpx, �kq
– �k`1 “ �k ` ↵kpAxk`1 ´ bq,

where ↵k ° 0 is a stepsize.

A. Narayan (U. Utah – Math/SCI) Alternation



Alternating Direction Method of Multipliers (ADMM)

The ADMM algorithm combines advantages of dual ascent, and the method of
multipliers.

Dual ascent performs gradient ascent on the dual (maximization) problem.

In particular, the gradient of the dual problem is explicitly computable if the dual
problem f˚ is smooth.

In this case, the algorithm becomes,
– xk`1 “ arg minx Lpx, �kq
– �k`1 “ �k ` ↵kpAxk`1 ´ bq,

where ↵k ° 0 is a stepsize.
Dual ascent is computationally nice because it can directly exploit separability: If

fpxq “
nÿ

j“1

fjpxjq, Ax “ pa1 ¨ ¨ ¨ anq x,

then one can form individual Lagrangians,

Ljpxj , �q “ fjpxjq ` �
T
ajxj ´ 1

n
�

T
b,

and update each xj independently. Unfortunately, convergence of dual ascent
requires unrealistic assumptions.
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Alternating Direction Method of Multipliers (ADMM)

The ADMM algorithm combines advantages of dual ascent, and the method of
multipliers.

The method of multipliers employs augmented Lagrangians.

min
x

fpxq subject to Ax “ b.

Augmented Lagrangians penalize the constraint above,

min
x

fpxq ` ⇢

2
}Ax ´ b}2

2 subject to Ax “ b,

and subsequently form the (“standard”) Lagrangian,

Lµpx, �q “ fpxq ` µ

2
}Ax ´ b}2

2 ` �
T pAx ´ bq.

Then again we form the dual function,

f˚p�q “ min
x

Lµpx, �q,
and perform ascent,

– xk`1 “ arg minx Lµpx, �kq
– �k`1 “ �k ` µpAxk`1 ´ bq,

The method of multipliers converges under milder conditions than dual ascent ,
But the augmented Lagrangian is not separable /
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Alternating Direction Method of Multipliers (ADMM)

The ADMM algorithm combines advantages of dual ascent, and the method of
multipliers.

First we assume f is block-separable and write the problem as,

min
x

fpxq ` gpyq, subject to Ax ` By “ c.

Above we have px, yq is the split version of the previous x.

ADMM proceeds by forming the augmented Lagrangian,

Lµpx, y, �q “ fpxq ` gpyq ` µ

2
}Ax ` By ´ c}2

2 ` �
T pAx ` By ´ cq.

ADMM then constructs the alternating minimization scheme,

xk`1 “ arg min
x

Lµpx, yk, �kq

yk`1 “ arg min
x

Lµpxk`1, y, �kq

�k`1 “ �k ` µpAxk`1 ` Byk`1 ´ cq
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ADMM in practice

ADMM looks a lot like the method of multipliers: if we use block Gauss-Seidel on
px, yq for the method of multipliers formulation, this is ADMM.

The alternation between x and y keeps the procedure distributed if f and g are
separable.

One also has nice convergence properties of ADMM: Under mild assumptions on f

and g, then
– }Axk ` Byk ´ c}2 Ñ 0 as k Ò 8.
– fpxkq ` gpykq Ñ minpx,yq:Ax`By“c fpxq ` gpyq as k Ò 8
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