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Alternation

Alternating methods solve an optimization problem by cycling through certain

optimization sub-problems.

One can alternate in terms of
— Objective components/sub-components
— Constraint sets

— Variable components
— Data (e.g., SGD)

A. Narayan (U. Utah — Math/SCI)

Alternation



Alternation

Alternating methods solve an optimization problem by cycling through certain

optimization sub-problems.

One can alternate in terms of
— Objective components/sub-components
— Constraint sets
— Variable components
— Data (e.g., SGD)
Our tour will take us through:
— Coordinate descent
— Bregman methods
— Alternating direction method of multipliers
— Alternating projections
— Proximal methods

— Majorize-minimization /Minorize-maximization
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A starting point: linear systems

We first consider solving a square, linear system:
Ax = b, AeR™"

One historical approach to solving such a potentially large system without direct
inversion is the Gauss-Seidel method.

First decompose A into its lower-triangular and strictly upper-triangular
components:

¥ (X---X\
X X '
A=L+U,  L=| . . . . U=
X X X \ X}
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Gauss-Seidel

J=b — L= b- U

The Gauss-Seidel method is an iterative approach. Let z(*) denote the kth iterate.
Gauss-Seidel updates via,

A=L+U

Y = L7 b — Uz®).

The process is repeated, and convergence is understood. (E.g., if A is diagonally
dominant.)
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Gauss-Seidel
A=L+U

The Gauss-Seidel method is an iterative approach. Let 2:(*) denote the kth iterate.
Gauss-Seidel updates via,

Y = L7 b — Uz®).

The process is repeated, and convergence is understood. (E.g., if A is diagonally
dominant.)

What is Gauss-Seidel doing? Note row j of this equation takes the form,
aj1T1 + aj2x2 + -+ + QjnTn = bn.

The Gauss-Seidel version of this equation is,

(k+1)

j + aj,j+1:l$§-k) + -+ ajnx%k> = b,

aj1wgk+1) + aj2$;k+1) + -+ aj;x

Solving these for all j can be accomplished via forward substitution:

— Solve row 1 for x1 (x;, 7 = 2 from previous iteration)

— Solve row 2 for x2 (x1 from previous step, x; j = 3 from previous iteration)

— Solve row 3 for z3 (1,2 from previous step, x; j = 4 from previous iteration)
l.e., this process cycles through equations, where each step is a one-dimensional
problem by fixing all other variables.
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Coordinate descent

For optimizing scalar functions, the same principle, cycling through individual
variables for “lower-level’ optimization problems, is the basic idea behind coordinate
descent.

glelgf(x)a f(CU) =f((x1,x2,,xn))

Coordinate proceeds by iteratively solving subproblems. Start with an initial iterate
2 set k = 0.

:ngﬂ) = arg min f(x1, :ng), e ,xﬁf’))
xq
xgkﬂ) = arg min f(:cgkﬂ),:cg, a:ék), e ,a:,(f))
x2
xgﬁ_l) = arg min f(xi(lk+1)axgk+1)a ce 7x7(1k—+11)7 x”)

Then repeat, set k «— k + 1.
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Coordinate descent visualized

15 , f(z,y) = 52* — 6y + 5y
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Image: Wikipedia, “Coordinate Descent’ page.

A. Narayan (U. Utah — Math/SCI) Alternation



Coordinate descent discussion

Each subproblem is generally much easier to solve than the full problem.

There are several variants of coordinate descent:
— We have described the determinstic cyclic approach

— Randomized descent (descent direction uniformly sampled at random each
step)

— Block coordinate descent (subproblems over more than 1 component variable)

— Minimization is algorithmically not performed exactly at each step, but instead
approximately solved, e.g., by taking a single gradient descent step.
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Coordinate descent convergence

hoount pondomizzd conrdined o gat

Coordinate descent converges under some assumptions.

Theorem

Assume f is smooth and convex and that fy is the value of a minimum. Then

Ef@®™) = fu s -

If f is strongly convex (with respect to the Euclidean norm), then

Ef(x(k))—f* ,S?“k, re (0,1).
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Bad examples of coordinate descent, |

Unfortunately, in general some smoothness is required.

Without smoothness, one can easily come up with bad examples.

3 f(z,y)=|z+y[+3ly—z|

Image: Wikipedia, “Coordinate Descent’ page.
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Bad examples of coordinate descent, Il

In particular: consider a deterministic cyclic coordinate descent.

— If f is smooth and convex and a full cycle through all n variables does not
change the iterate, we are at a local minimum (becuase Vf = 0).

— If f is not smooth but still convex, and again a full cycle through all n
variables does not change the iterate, there is no guarantee we are at a local
minimum (coordinatewise minimization is not sufficient for stationarity).

— If f is convex and “part’ of it is smooth, then coordinate-wise minimality
implies global minimality.
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Usage of coordinate descent

Coordinate descent is frequently used for optimizing non-smooth objectives of the
form:

f(x)
h(x)

g(z) + h(z),
i=1
where g is smooth (and frequently convex) and h is convex but not smooth.

Such functions h are called separable.
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Usage of coordinate descent

Coordinate descent is frequently used for optimizing non-smooth objectives of the
form:

f(x)
h(x)

9(x) + h(z),
2, hilws),
i=1

where g is smooth (and frequently convex) and h is convex but not smooth.
Such functions h are called separable.

For example, the LASSO optimization in Lagrangian form,

s
2 ')(fl
1=

1 =3
min | Az — bJ3 + Al I,
l.e., the #1 norm is separable. Also separable: box constraints via penalization.

Separable (and/or block separable) objectives are popular in sparse approximation,
model /variable selection, /cjmpressed sensing, and (group-)sparse regularization.

C
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Adaptive coordinate descent

There are many variants of coordinate descent. E.g., adaptive coordinate descent
attempts to rotate variables via a empirical covariance matrix to decorrelate
variables.

a) Principal Component Analysis

c) Coordinate Descent Method
bl)

TY% 'rblz
1

Image: Loshchilov et al,

“Adaptive coordinate descent’.
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Bregman methods

Bregman methods excel at solving optimization problems of the form,

min f(z) + g(z),

xeR™

where f(z) is a convex non-smooth “¢'"-type regularization term, and g(z) is a
convex (and typically smooth) data misfit term.

A common example is regularized basis pursuit problem:
: A 2
min |z|1 + =||Az — b3,
reR™ 2
or total variation regularization for reconstruction of an image w,

) A
min | Vul: + 5 |Hu — |3,
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Subgradients

To introduce Bregman methods, we need the concept of subdifferentials, which
quantify notions of descent for non-smooth convex functions.

Given a continuous, convex function f : IR"™ — IR, a subgradient of f at-a point xg

is any d € R"™ such that for all z, I\ T V HMS: [Xl
F(z) — f(zo) = d¥ (x — o), ,\3) ......... oo

i.e., it is any direction for which a linear approximation is a lower bound on the
function value.

The set 0f(xo) of all subgradients of f at x¢ is the subdifferential of f at xo.
The subdifferential at z¢ is a closed, convex set.

The subdifferential df(zo) is a singleton in R™ if and only if f is differentiable.
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Subgradients

To introduce Bregman methods, we need the concept of subdifferentials, which
quantify notions of descent for non-smooth convex functions.

Given a continuous, convex function f : R"™ — IR, a subgradient of f at a point xg
is any d € R"™ such that for all z,

f(z) — f(zo0) = d' (z — z0),

i.e., it is any direction for which a linear approximation is a lower bound on the
function value.

The set 0f(xo) of all subgradients of f at x¢ is the subdifferential of f at xo.

The subdifferential at x¢ is a closed, convex set.

The subdifferential df(zo) is a singleton in R™ if and only if f is differentiable.

With f provided, the Bregman distance between points x,xo € R" is
Da(z,x0) = f(x) — (f(w0) +d" (x — x0)),

i.e., it is the “subgradient gap” in the direction d.
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The Bregman algorithm

min f(z) + g(z),

xeR™

The basic Bregman algorithm proceeds as follows: with z¢ an initial guess and

do € 6f(a:0)

Set k£ = 0.
1. Solve

Tr+1 = argmin Dy, (x, xr) + g(x).

This is frequently approximately solved, e.g., via descent methods.
2. Update the subgradient,

dik+1 = di — Vg(Tk+1) € Of (Th41).

3. k< k + 1 and iterate

One way to interpret the Bregman method: descend on g without going too far (in
the f-Bregman sense) from the starting point.

A. Narayan (U. Utah — Math/SClI) Alternation



Bregman method properties

The Bregman algorithm has some nice properties.

For example, if g is smooth and f satisfies certain weak continuity conditions, then
9(zr+1) < g(@k).

Recall that g is frequently a (smooth) data misfit term.

Hence Bregman methods ensure monotone behavior of data misfit.
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Bregman method properties

The Bregman algorithm has some nice properties.

For example, if g is smooth and f satisfies certain weak continuity conditions, then
9(zr+1) < g(@k).

Recall that g is frequently a (smooth) data misfit term.

Hence Bregman methods ensure monotone behavior of data misfit.

There are various generalizations of Bregman methods.

E.g., linearized Bregman methods linearize g at each step so that subproblems
frequently have explicit solutions.

One generalization that is relevant for us is the split Bregman method.
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Split Bregman, |
The split Bregman approach is an alternating algorithm.
We consider a special kind of objective, @ R
| 0.q Ol =dx
min |[®(z)]1 + g(2),

where g is convex and smooth (typically g is a quadratic misfit), and ® is convex
(e.g., affine).

Split Bregman first rewrites the problem as a constrained one:

in |d
pnin[d+ g(z),

and subsequently relaxes the constraint,
: A 2
min [d]s + g(x) + 5d — B(x) .

We can now define

fla) = ldlx + g(z).
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Split Bregman, Il

min f(z) + 5)d— ®(@)[3,  f(x) = [d]: +g(x)

)

Split Bregman now essentially just applied “ordinary” Bregman to the above.

The algorithm is an alternating scheme by realizing that f is separable in (d, x).
In addition, one introduces an augmented Lagrange variable b for the data misfit
term:

— Solve
YKH A ,
1 = argming(a) + di — B(x) — b3

— Solve
) A 0
di+1 = argmin ||d||1 + §Hd — B (xpr1) — bl

— Solve

bey1 = b + P(Try1) — diy1

Split Bregman methods frequently perform well for non-smooth #;-type
regularization objectives.
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Alternating Direction Method of Multipliers (ADMM)

The ADMM algorithm combines advantages of dual ascent, and the method of
multipliers.

We've seen dual ascent before: consider

min f(z) subject to Az =b.

By forming the Lagrangian,
L(z, \) = f(z) + A" (Az —b),
then the dual function is the minimum.

M

+(\) = min L(z, \) ~ 145 Gn cﬂu} 7£”
f«(A) = min L(z, A) w i mW s,

And when there is zero duality gap, we solve the dual problem and recover the
primal solution,

Ay = max fe(N), Ty = min L(x, Ay).
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Alternating Direction Method of Multipliers (ADMM)

The ADMM algorithm combines advantages of dual ascent, and the method of
multipliers.

Dual ascent performs gradient ascent on the dual (maximization) problem.

In particular, the gradient of the dual problem is explicitly computable if the dual
problem f, is smooth.
In this case, the algorithm becomes,

— Tpy1 = argmin, L(x, \)

— Mgt+1 = Ak + ap(Axk+1 — b),

where o > 0 is a stepsize.
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Alternating Direction Method of Multipliers (ADMM)

The ADMM algorithm combines advantages of dual ascent, and the method of
multipliers.

Dual ascent performs gradient ascent on the dual (maximization) problem.

In particular, the gradient of the dual problem is explicitly computable if the dual
problem f, is smooth.

In this case, the algorithm becomes,
— Tp+1 = argmin, L(x, Ag)
— Ak+1 = Ak + ak(Axk+1 — b),
where o, > 0 is a stepsize.
Dual ascent is computationally nice because it can directly exploit separability: If

fl@)=>" fi(=z)), Az = (a1~ an)z,
j=1
then one can form individual Lagrangians,
1
Lj(xzj,\) = fi(z;) + A aja; — EATb,

and update each z; independently. Unfortunately, convergence of dual ascent
requires unrealistic assumptions.
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Alternating Direction Method of Multipliers (ADMM)

The ADMM algorithm combines advantages of dual ascent, and the method of
multipliers.
The method of multipliers employs augmented Lagrangians.
mxin f(x) subject to Ax = b.

Augmented Lagrangians penalize the constraint above,

min f(x) #gﬂAaz —b|5 subject to Az = b,
and subsequently form the (“standard”) Lagrangian,

Lu(z,\) = f(z) + gHAx — b2 + AT (Az — b).
Then again we form the dual function,

fx(A) = mgn L,(x,A),

and perform ascent,

— Tpy1 = argmin, L, (x, \)

- Met+1 = Ak + p(Axk+1 — D),
The method of multipliers converges under milder conditions than dual ascent ®
But the augmented Lagrangian is not separable ®
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Alternating Direction Method of Multipliers (ADMM)

The ADMM algorithm combines advantages of dual ascent, and the method of
multipliers.

First we assume f is block-separable and write the problem as,

min f(z) + g(y), subject to Az + By = c.

Above we have (z,y) is the split version of the previous .

ADMM proceeds by forming the augmented Lagrangian,

Li(2,y,X) = f(@) + 9(y) + S Az + By — cl3 + AT (Az + By — o).
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Alternating Direction Method of Multipliers (ADMM)

The ADMM algorithm combines advantages of dual ascent, and the method of
multipliers.

First we assume f is block-separable and write the problem as,

min f(z) + g(y), subject to Az + By = c.

Above we have (z,y) is the split version of the previous .

ADMM proceeds by forming the augmented Lagrangian,
Li(2,y,X) = f(@) + 9(y) + S Az + By — cl3 + AT (Az + By — o).
ADMM then constructs the alternating minimization scheme,

Tr4+1 = argmin L, (2, Yk, Ak)

Yr+1 = argmin L, (Tk41,Y, Ak)

A1 = A + p(Axk+1 + Bygt1 — ¢)
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ADMM in practice

ADMM looks a lot like the method of multipliers: if we use block Gauss-Seidel on
(z,y) for the method of multipliers formulation, this is ADMM.

The alternation between x and y keeps the procedure distributed if f and g are
separable.

One also has nice convergence properties of ADMM: Under mild assumptions on f
and g, then

— |[Azr + Byr — c|2 — 0 as k 1 o0.
— f(zr) + 9(yr) = mine y): az+By=c f(x) + g(y) as k 1 o
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