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Regularization and relaxation

Two approaches aim to “improve” either the
– Regularization – augmenting the objective, typically to improve “quality” of

solutions
– Relaxation – changing the objective, typically to make problem easier to solve

A. Narayan (U. Utah – Math/SCI) Regularization and relaxation



Regularization

A. Narayan (U. Utah – Math/SCI) Regularization and relaxation



The idea behind regularization

Consider the unconstrained optimization,

min
xP n

fpxq.

(No serious changes if this a constrained problem instead.)

The motivating issues behind regularization are that the above problem
– may have many, spurious, solutions
– may be numerically difficult to solve due to sensitivity of f
– may have a solution that is ‘unphysical’ in practice

Regularization combats these issues by augmenting the objective,

min
xP n

fpxq ` �Rpxq,

where � ° 0 is a regularization parameter, and Rpxq • 0 is the regularization

function.

Frequently R is chosen to penalize ‘bad’ solution behavior.
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Tikhonov regularization

Perhaps the simplest regularization is Tikhonov regularization:

min
xP n

fpxq ` �}x}22.

This type of regularization is interpretable by considering extremes:
– � Ó 0: the objective converges to f , and if x˚p�q denotes a solution to the

above problem at a fixed �, then with some assumptions on f one has that
x˚p�q Ñ x˚p0q.

– � Ò 8: the regularization term dominates f (assuming f is finite everywhere)
and x˚p�q Ñ 0

Tikhonov regularization is well-understood in several contexts.
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Tikhonov regularization for least squares

In a regularized linear least squares problem, we have

min
xP n

}Ax ´ b}22 ` �}x}22.

Note that this is also a linear least squares problem....

The effect of the regularization can be deduced by considering the normal equations:

pATA ` �Iqx˚p�q “ AT b.

The effect is to make the normal equations better conditioned. (E.g., if ATA is
rank-deficient) Furthermore, one can show in this case that

lim
�Ó0

x˚p�q “ argmin }x}22 subject to }Ax ´ b}22 is minimized.

I.e., in the limit this regularization produces the minimal-norm least squares
solution.
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Penalty methods

Penalty methods are a type of regularization. Consider:

min
xPS

fpxq.

Instead of directly solving this constrained optimization problem, penalty methods
convert it into an unconstrained problem by regularizing presence outside the
feasible set:

min
xPS

fpxq ` �gpxq,

where gpxq (typically) satisfies:

gpxq “ 0, x P S

gpxq ° 0, x R S.

For example, gpxq “ maxt0,´sdistpx, Squ is a common choice, where sdist is the
signed distance function to S:

sdistpx, Sq “
"

distpx, BSq, x P S
´distpx, BSq, x R S

A. Narayan (U. Utah – Math/SCI) Regularization and relaxation



Penalty algorithm outline

min
xPS

fpxq ` ⌘gpxq, (1)

Penalty methods typically solve several unconstrained optimization problems:
1. Initialize initial guess x0, penalty parameter ⌘ ° 0, and amplification factor

M ° 1.
2. Solve (2) to obtain unconstrained solution xp⌘q
3. Set ⌘ – M⌘

4. Set x0 – xp⌘q. Return to step 2.
The expectation is that as ⌘ increases, the solution to the unconstrained problem
appraoches the solution of the original constrained problem.

There is typically no guarantee that xp⌘q for any given ⌘ is feasible.
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Interior Point Methods, I

Interior Point Methods/Barrier Methods are a stronger type of penalty method
approach: Iterates are forced to be feasible at each step.

min
xPS

fpxq ›Ñ min
x

fpxq ´
Pÿ

i“1

⌘i logp´gipxqq, (2)

where

x P S –Ñ gipxq § 0, i P rP s,

and this time we are interested in sending ⌘i to 0.

At a high level, we just chose a different function, logp´gipxqq, which is called a
logarithmic barrier function.

However, the advantages are that this logarithmic barrier is much stronger than a
signed distance function, and it ensures that solutions are feasible – i.e., that
solutions are interior to S.
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Interior Point Methods, II

min
x

fpxq ´
Pÿ

i“1

⌘i logp´gipxqq.

Setting the gradient of this function to zero results in

rf `
Pÿ

i“1

´⌘i
gipxqrgipxq “ 0.

The form above suggests introduction of dual/Lagrange variables:

�i :“ ´⌘i
gipxq • 0,

so we can rewrite the gradient as,

rf `
Pÿ

i“1

�irgipxq “ 0.

I.e., this is KKT stationarity.
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Interior Point Methods, III

min
xPS

fpxq ´
Pÿ

i“1

⌘i logp´gipxqq,

with conditions

rf `
Pÿ

i“1

�irgipxq “ 0,

p´gipxqq�i “ ⌘i.

The first condition is augmented Lagrangian stationarity, and the second condition
is type of “perturbed” complementary slackness.

Interior point methods are numerical solvers for px,�q satisfying the above
conditions.
A simple version uses Newton’s method on the objective
fpxq ´ ∞P

i“1 ⌘i logp´gipxqq, subject to p´gipxqq�i “ ⌘i.

Again, iterates are forced to be feasible, and the barrier function promotes optima
in the interior of S.

Like generic penalty methods, the problem is solved repeatedly, sending ⌘i Ó 0,
reusing previous solutions as initial guesses.
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Other regularization examples

– In neural networks, one regularizes learning by, e.g., an `2-type term involving
the network weights + biases to combat overfitting.

– In similar statistical fitting problems, a sparsity-promoting term is added to
encourage “simpler” models, i.e., data-fitting models with fewer active features.
(E.g., LASSO/basis pursuit)

– In graph learning, a graph Laplacian regularization is employed to promote
simplicity of the learned graph

– In (ill-posed) inverse problems, a regularization term is sometimes used to
ensure some type of unique solution.

– In algorithms, regularization is used to make operations more stable. (Cf.
Gauss-Newton vs. Levenberg-Marquardt)

– The nuclear norm of a matrix is often used in matrix completion in the context
of recovery of low-rank, sparse matrices
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Relaxation

Relaxation is an approximation strategy generally employed to make problems
“easier” to solve.

We’ve already seen one example of relaxation from compressed sensing:

min
x

}x}0 subject to Ax “ b

Ó
min
x

}x}1 subject to Ax “ b

In this particular case, we saw that under certain conditions on A, the solution to
these two problems are the same.

In general, relaxation methods change the optimization problem in a different one.

The hope is that the solution to the relaxed problem is “close” to the solution of the
original problem.
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There are “bad” relaxations

Not every sensible relaxation “works” as intended. Consider:

min }x}1 subject to }Ax ´ b}2 is minimized

This is a regularization problem: the norm } ¨ }1 is used as a regularizer, typically to
promote sparsity of x.

The } ¨ }1 is generally harder to work (say than the } ¨ }2) norm, e.g., since it’s not
differentiable everywhere.

One might be tempted to relax } ¨ }1 to } ¨ }2:

min }x}2 subject to }Ax ´ b}2 is minimized

This problem is certaintly easier to solve (it’s a minimum norm least squares
problem).

But the solution x to this relaxed problem is not (generally) sparse, and hence gives
quite a different answer than the } ¨ }1 problem.
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General relaxation

Consider the constrained optimization problem,

min
xPS

fpxq.

A general relaxation of this problem identifies (i) a lower bound g for the function
f , and/or (ii) a larger feasible set T :

min
xPT

gpxq,

where

f § g on S, S Ñ T.
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Relaxation guarantees

min
xPS

fpxq ›Ñ min
xPT

gpxq

How does a solution x˚ of the original problem compare to a solution x˚˚ of the
relaxed problem?

– We always have that fpx˚q • fpx˚˚q, so that x˚ is an upper bound for the
relaxed problem.

– A much stronger statement: Assume that fpxq “ gpxq for all x P S. If the
relaxed solution x˚˚ P S, then it is also optimal for the original problem.

A. Narayan (U. Utah – Math/SCI) Regularization and relaxation



Relaxation guarantees

min
xPS

fpxq ›Ñ min
xPT

gpxq

How does a solution x˚ of the original problem compare to a solution x˚˚ of the
relaxed problem?

– We always have that fpx˚q • fpx˚˚q, so that x˚ is an upper bound for the
relaxed problem.

– A much stronger statement: Assume that fpxq “ gpxq for all x P S. If the
relaxed solution x˚˚ P S, then it is also optimal for the original problem.

A. Narayan (U. Utah – Math/SCI) Regularization and relaxation



Relaxations

Some typical examples of relaxations are
– Euclidean-type “norms”

§ Sparsity: } ¨ }0 Ñ } ¨ }1
§ Smoothness: } ¨ }1 Ñ } ¨ }2

– Matrix rank: rankp¨q Ñ } ¨ }NN, the nuclear norm
– (Mixed) Integer linear programs: discrete Ñ continuous
– Lagrangian relaxation methods
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Lagrangian relaxation

Lagrangian relaxation aims to transfer “difficult to handle” constraints to the
objective. Consider:

min
xPS1XS2

fpxq,

where S1 is “easy” to handle, and S2 is “hard” to handle.

The theory is general and rich, but we’ll specialize to linear programming and
remove the “easy” constraints to state results:

Minimize cTx

Subject to Ax § b.
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The Lagrangian Bounding Principle

Minimize cTx

Subject to Ax § b.

Let x˚ be solution to the above problem.
The relaxed version of the problem is

min
x

cTx ` �T pAx ´ bq.

We will need some extra notation to state results:

Lp�q :“ min
x

cTx ` �T pAx ´ bq.

A simple result:

Lemma

For any � • 0, Lp�q § cTx˚.
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The Lagrangian dual problem

Lp�q “ min
x

cTx ` �T pAx ´ bq.

Lp�q § cTx˚

To make the Lagrangian bound as tight as possible, we might try to solve the
following Lagrangian dual problem:

L˚ “ max
�•0

Lp�q.

The definition of this problem immediately leads to the following.

Theorem (Weak duality)

L˚ § cTx˚
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Optimality certificates

The lower bound guarantee L˚ § cTx˚ doesn’t in general imply equality.

The difference between these two, cTx˚ ´ L˚ is the duality gap, roughly speaking
is a fudge factor that we suffer when solving the dual problem relative to the primal
one.

Even in the presence of a duality gap, the Lagrangian gives us a quantitative
measure of how far we are from optimality:

cTx ´ Lp�q
Lp�q ,

is a relative daulity gap measure, and is a quantitative prescription on how far from
a solution we are.

Of course, such a measure is most useful when the duality gap vanishes.
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Optimality for linear programming

Lp�q “ min
x

cTx ` �T pAx ´ bq.

One of the more useful facts about linear programming is that the duality gap
vanishes under mild assumptions.

Theorem (Optimality test)

Suppose px,�q is such that x is feasible (i.e., Ax § b), and the pair satisifes the

complementary slackness condition,

�T pAx ´ bq “ 0,

then Lp�q “ L˚, and x “ x˚.

The result above is a cornerstone of many linear programming solvers, which exploit
duality in computations.

Typically the dual problem solvers utilize descent types of algorithms.
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