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Regularization and relaxation

L

Two approaches aim to “improve” either the ;
Regularization — augmenting the objective, typically to improve “quality” of

solutions
Relaxation — changing the objective, typically to make problem easier to solve
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Regularization
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The idea behind regularization

Consider the unconstrained optimization,

min f(z).

(No serious changes if this a constrained problem instead.)

The motivating issues behind regularization are that the above problem

— may have many, spurious, solutions
— may be numerically difficult to solve due to sensitivity of f

— may have a solution that is ‘unphysical’ in practice
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The idea behind regularization

Consider the unconstrained optimization,

min f(z).

(No serious changes if this a constrained problem instead.)

The motivating issues behind regularization are that the above problem
— may have many, spurious, solutions
— may be numerically difficult to solve due to sensitivity of f
— may have a solution that is ‘unphysical’ in practice

Regularization combats these issues by augmenting the objective,

min f(x) + AR(z),

xeR™

where \ > 0 is a regularization parameter, and R(x) = 0 is the regularization
function.

Frequently R is chosen to penalize ‘bad’ solution behavior.
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Tikhonov regularization

Perhaps the simplest regularization is Tikhonov regularization:

min f(z) + Alz[3.

rxeR™

This type of regularization is interpretable by considering extremes:

— A | 0: the objective converges to f, and if z4(\) denotes a solution to the
above problem at a fixed \, then with some assumptions on f one has that
Ty () = z4(0),

— X 1 o0: the regularization term dominates f (assuming f is finite everywhere)
and z4(\) = 0

Tikhonov regularization is well-understood in several contexts.
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Tikhonov regularization for least squares

In a regularized linear least squares problem, we have

min |Az —b|3 + N|z[3. = (6"14}(]7 (bﬁ/’/) + )XT)(

TxeR™

Note that this is also a linear least squares problem....
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Tikhonov regularization for least squares

In a regularized linear least squares problem, we have

min | Az — bl + Az|s.

TxeR™

Note that this is also a linear least squares problem....
The effect of the regularization can be deduced by considering the normal equations:
(ATA+ XDzy(N) = AT

The effect is to make the normal equations better conditioned. (E.g., if AT A is
rank-deficient)
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Tikhonov regularization for least squares

In a regularized linear least squares problem, we have

min | Az — bl + Az|s.

zER™

Note that this is also a linear least squares problem....

The effect of the regularization can be deduced by considering the normal equations:
(ATA+ XDzy(N) = AT

The effect is to make the normal equations better conditioned. (E.g., if AT A is
rank-deficient) Furthermore, one can show in this case that

1}%108 T4(\) = argmin |z]|5 subject to || Az — b|5 is minimized.

l.e., in the limit this regularization produces the minimal-norm least squares
solution.
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Penalty methods

Penalty methods are a type of regularization. Consider:

Instead of directly solving this constrained optimization problem, penalty methods
convert it into an unconstrained problem by regularizing presence outside the

feasible set: 7
87 0 560
nin f(2) + Ag(x),

n
where g(x) (typically) satisfies: ') @/é%/

g(x) =0, ze S
g(x) >0, z¢S8.

For example, g(x) = max{0, —sdist(x, S)} is a common choice, where sdist is the
signed distance function to S:

dist(x,0S5), =z €S

sdist(z, 5) = { —dist(z,0S), ¢S
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Penalty algorithm outline

Hq/la ((7(2;)]

min f(z) + ng(z), (1)

€S

Penalty methods typically solve several unconstrained optimization problems:

1.

2.
3.
4.

Initialize initial guess xo, penalty parameter n > 0, and amplification factor
M > 1.

Solve (2) to obtain unconstrained solution z(7)
Set n «— Mn
Set xg « x(n). Return to step 2.

The expectation is that as 7 increases, the solution to the unconstrained problem
apprg,oches the solution of the original constrained problem.

0Q

There is typically no guarantee that x(n) for any given 7 is feasible.
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Interior Point Methods, |

Interior Point Methods/Barrier Methods are a stronger type of penalty method
approach: lterates are forced to be feasible at each step.

min f(z) — min f(z) - Zmlog —g:(@)), (2)

xTeS

where
reS «— gi(zr)<0, ie[P],

and this time we are interested in sending 7); to 0.
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Interior Point Methods, |

Interior Point Methods/Barrier Methods are a stronger type of penalty method
approach: lterates are forced to be feasible at each step.

min f(z) — min f(z) — Z ni log(—gi(z)), (2)

xTeS

where
reS «—— gi(x)<0, ie[P],
and this time we are interested in sending 7); to 0.

At a high level, we just chose a different function, log(—g;(x)), which is called a
logarithmic barrier function.

However, the advantages are that this logarithmic barrier is much stronger than a
signed distance function, and it ensures that solutions are feasible — i.e., that
solutions are interior to S.
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Interior Point Methods, I

mlnf 2771 log(—gi(x)).

Setting the gradient of this function to zero results in

so we can rewrite the gradient as,

P
Vf + Z )\ngq;(ZB) = 0.

=1

l.e., this is KKT stationarity.
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Interior Point Methods, IlI

min f(z) — Zmlog —gi(x)), j;[x}-é 0

xeS

with conditions

P
Vf+ 2 AiVgi(x) =0,
=1 /) 7) (& ); j O
(—gi(z))Ai = mi.
The first condition is augmented Lagrangian stationarity, and the second condition
is type of “perturbed” complementary slackness.
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Interior Point Methods, IlI

xeS

min f(z) — Z ni log(—gi(x)),

with conditions

P
Vf+ 2 AiVgi(x) =0,

(—=gi(z))\i = ;.

The first condition is augmented Lagrangian stationarity, and the second condition
is type of “perturbed” complementary slackness.

Interior point methods are numerical solvers for (x, \) satisfying the above
conditions.

A simple version uses Newton's method on the objective
f(@) = X;_, nilog(—gi(z)), subject to (—gi(x))Ai = mi.

Again, iterates are forced to be feasible, and the barrier function promotes optima
in the interior of S.

Like generic penalty methods, the problem is solved repeatedly, sending n; | 0,
reusing previous solutions as initial guesses.
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Other regularization examples

— In neural networks, one regularizes learning by, e.g., an ¢*-type term involving
the network weights + biases to combat overfitting.
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Other regularization examples

— In neural networks, one regularizes learning by, e.g., an ¢*-type term involving
the network weights + biases to combat overfitting.

— In similar statistical fitting problems, a sparsity-promoting term is added to
encourage “simpler’ models, i.e., data-fitting models with fewer active features.

(E.g., LASSO/basis pursuit)
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Other regularization examples

— In neural networks, one regularizes learning by, e.g., an ¢*-type term involving
the network weights + biases to combat overfitting.

— In similar statistical fitting problems, a sparsity-promoting term is added to
encourage “simpler’ models, i.e., data-fitting models with fewer active features.
(E.g., LASSO/basis pursuit)

— In graph learning, a graph Laplacian regularization is employed to promote
simplicity of the learned graph
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Other regularization examples

— In neural networks, one regularizes learning by, e.g., an ¢*-type term involving
the network weights + biases to combat overfitting.

— In similar statistical fitting problems, a sparsity-promoting term is added to
encourage “simpler’ models, i.e., data-fitting models with fewer active features.
(E.g., LASSO/basis pursuit)

— In graph learning, a graph Laplacian regularization is employed to promote
simplicity of the learned graph

— In (ill-posed) inverse problems, a regularization term is sometimes used to
ensure some type of unique solution.
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Other regularization examples

— In neural networks, one regularizes learning by, e.g., an ¢*-type term involving
the network weights + biases to combat overfitting.

— In similar statistical fitting problems, a sparsity-promoting term is added to
encourage “simpler’ models, i.e., data-fitting models with fewer active features.
(E.g., LASSO/basis pursuit)

— In graph learning, a graph Laplacian regularization is employed to promote
simplicity of the learned graph

— In (ill-posed) inverse problems, a regularization term is sometimes used to
ensure some type of unique solution.

— In algorithms, regularization is used to make operations more stable. (Cf.
Gauss-Newton vs. Levenberg-Marquardt)

(173) = 3"h
A
+\L

A. Narayan (U. Utah — Math/SClI) Regularization and relaxation



Other regularization examples

— In neural networks, one regularizes learning by, e.g., an ¢*-type term involving
the network weights + biases to combat overfitting.

— In similar statistical fitting problems, a sparsity-promoting term is added to
encourage “simpler’ models, i.e., data-fitting models with fewer active features.
(E.g., LASSO/basis pursuit)

— In graph learning, a graph Laplacian regularization is employed to promote
simplicity of the learned graph

— In (ill-posed) inverse problems, a regularization term is sometimes used to
ensure some type of unique solution.

— In algorithms, regularization is used to make operations more stable. (Cf.
Gauss-Newton vs. Levenberg-Marquardt)

— The nuclear norm of a matrix is often used in matrix completion in the context
of recovery of low-rank, sparse matrices
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Relaxation

Relaxation is an approximation strategy generally employed to make problems
“easier’ to solve.

We've already seen one example of relaxation from compressed sensing:
min ||x||o subject to Ax = b
X

l

min ||x||; subject to Ax = b
T

In this particular case, we saw that under certain conditions on A, the solution to
these two problems are the same.
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Relaxation

Relaxation is an approximation strategy generally employed to make problems
“easier’ to solve.

We've already seen one example of relaxation from compressed sensing:
min ||z |o subject to Az = b
X

l

min ||x||; subject to Ax = b
T

In this particular case, we saw that under certain conditions on A, the solution to
these two problems are the same.

In general, relaxation methods change the optimization problem in a different one.

The hope is that the solution to the relaxed problem is “close” to the solution of the
original problem.
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There are “bad” relaxations

Not every sensible relaxation “works” as intended. Consider:
min ||x||; subject to |Ax — b||2 is minimized

This is a regularization problem: the norm | - |1 is used as a regularizer, typically to
promote sparsity of @.

The | - |1 is generally harder to work (say than the || - |2) norm, e.g., since it's not
differentiable everywhere.
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There are “bad” relaxations

Not every sensible relaxation “works” as intended. Consider:
min ||x||; subject to |Ax — b||2 is minimized

This is a regularization problem: the norm | - |1 is used as a regularizer, typically to
promote sparsity of @.

The | - |1 is generally harder to work (say than the || - |2) norm, e.g., since it's not
differentiable everywhere.

One might be tempted to relax | - [|; to | - [|2:
min ||x||2 subject to |Ax — b||2 is minimized

This problem is certaintly easier to solve (it's a minimum norm least squares
problem).

But the solution « to this relaxed problem is not (generally) sparse, and hence gives
quite a different answer than the | - |1 problem.
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General relaxation

Consider the constrained optimization problem,

min f(x).

xzeS

A general relaxation of this problem identifies (i) a lower bound g for the function
f, and/or (ii) a larger feasible set 7"

min g(x),

where

f<gonls, ScT.
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Relaxation guarantees

'X\( ()(XK’

min f(z) —  ming(z)

How does a solution x4 of the original problem compare to a solution x4y of the
relaxed problem?

— We always have that f(zy) = f(zxx), so that x4 is an upper bound for the
relaxed problem.
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Relaxation guarantees

min f(z) —  ming(z)

How does a solution x4 of the original problem compare to a solution x4y of the
relaxed problem?

— We always have that f(zy) = f(zxx), so that x4 is an upper bound for the
relaxed problem.

— A much stronger statement: Assume that f(z) = g(z) for all x € S. If the
relaxed solution x4y € .5, then it is also optimal for the original problem.
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Relaxations

Some typical examples of relaxations are
— Euclidean-type “norms”

{\
> Sparsity: || o — |- Il,= &5
> Smoothness: || - |1 — || - |2 "
— Matrix rank: rank(-) — || - |xn~, the nuclear norm

— (Mixed) Integer linear programs: discrete — continuous

— Lagrangian relaxation methods
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Lagrangian relaxation

Lagrangian relaxation aims to transfer “difficult to handle” constraints to the
objective. Consider:

in f(z),

where S is “easy” to handle, and S is “hard” to handle.

The theory is general and rich, but we'll specialize to linear programming and
remove the “easy”’ constraints to state results:

Minimize ¢ x

Subject to Ax < b.
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The Lagrangian Bounding Principle

Minimize ¢’ z
Subject to Ax < b.

Let x4 be solution to the above problem.
The relaxed version of the problem is

mine’ « + A" (Az — b).

x
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The Lagrangian Bounding Principle

Minimize ¢’ z
Subject to Ax < b.

Let x4 be solution to the above problem.
The relaxed version of the problem is

mine’ « + A" (Az — b).

x

We will need some extra notation to state results:

L(\) == minc" @ + \" (Az — b).

X

A simple result:

Lemma
For any A >0, L(\) < " x4.
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The Lagrangian dual problem

L(\) = minc’x + \" (Az — b).

x

L) < c'xy

To make the Lagrangian bound as tight as possible, we might try to solve the
following Lagrangian dual problem:

Ly = max L()).
A=0
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The Lagrangian dual problem

L(\) = minc’x + \" (Az — b).

L) < c'xy

To make the Lagrangian bound as tight as possible, we might try to solve the
following Lagrangian dual problem:

Ly = max L()).
A=0

The definition of this problem immediately leads to the following.

Theorem (Weak duality)

L* < CTQ'J*
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Optimality certificates

The lower bound guarantee Ly < ¢’y doesn't in general imply equality.

The difference between these two, ¢’ @4« — Ly is the duality gap, roughly speaking
is a fudge factor that we suffer when solving the dual problem relative to the primal
one.
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Optimality certificates

The lower bound guarantee Ly < ¢’y doesn't in general imply equality.

The difference between these two, ¢’ @4« — Ly is the duality gap, roughly speaking
is a fudge factor that we suffer when solving the dual problem relative to the primal
one.

Even in the presence of a duality gap, the Lagrangian gives us a quantitative
measure of how far we are from optimality:

cT:B—L()\) N CTKk LR ')
7oV L

is a relative daulity gap measure, and is a quantitative prescription on how far from
a solution we are.

Of course, such a measure is most useful when the duality gap vanishes.
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Optimality for linear programming

L(\) = minc’ @ + A" (Az — b).

X

One of the more useful facts about linear programming is that the duality gap
vanishes under mild assumptions.

Theorem (Optimality test)

Suppose (x, \) is such that x is feasible (i.e., Ax < b), and the pair satisifes the
complementary slackness condition,

M (Az —b) =0,

then L(\) = Ly, and © = x.
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Optimality for linear programming

L(\) = minc’ @ + A" (Az — b).

X

One of the more useful facts about linear programming is that the duality gap
vanishes under mild assumptions.

Theorem (Optimality test)

Suppose (x, \) is such that x is feasible (i.e., Ax < b), and the pair satisifes the
complementary slackness condition,

M (Az —b) =0,
then L(\) = Ly, and © = x.

The result above is a cornerstone of many linear programming solvers, which exploit
duality in computations.

Typically the dual problem solvers utilize descent types of algorithms.
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