
Math 6880/7875: Advanced Optimization

Descent algorithms, Part II

Akil Narayan1

1Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute
University of Utah

Feburary 15, 2022

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Descent algorithms

A foundational computational algorithmic idea for unconstrained + smooth
optimization is a descent method.

Our focus for the second half of our discussion about descent methods is least
squares problems.

– Least squares problems
– Large-scale gradient computations
– Acceleration strategies

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Basics of least squares problems

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

(Nonlinear) least squares problems

Consider the unconstrained optimization,

min
xP n

1
2

}rpxq}22 ,

so that the objective is a sum-of-squares loss.

The residual vector r is typically a discrepancy between a model ypc;xq and some
available labeled data tpcm, ymquMm“1:

rpxq :“ pr1pxq, . . . , rM pxqqT , rmpxq “ ym ´ ypcm;xq.

The prototypical example is linear least squares:

ypc;xq :“
nÿ

j“1

xj�jpcq.

The general case occurs in pretty much any model fitting scenario, such as deep
learning.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

The residual vector

min
xP n

1
2

}rpxq}22 ,

First note the unremarkable expression for the gradient:

r
1
2

}rpxq}22 “ rrpxqrpxq, rrpxq P nˆM

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

The residual vector

min
xP n

1
2

}rpxq}22 ,

First note the unremarkable expression for the gradient:

r
1
2

}rpxq}22 “ rrpxqrpxq, rrpxq P nˆM

where rr is the Jacobian of r:

prrpxqqj,m “ B
Bxj

rmpxq, rr “ prr1, . . . , rrmq .

If we are in a data fitting scenario, with rm “ ym ´ ypcm;xq, then
rrj “ ´rypcm;xq, i.e., the required gradient is just the gradient of the model
being fit.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

The residual vector

min
xP n

1
2

}rpxq}22 ,

First note the unremarkable expression for the gradient:

r
1
2

}rpxq}22 “ rrpxqrpxq, rrpxq P nˆM

The rather remarkable property is the form of the Hessian,

r
2rpxq “ rrpxqrrpxqT `

Mÿ

m“1

rmpxqr2rpxq.

I.e., the first “part” of the Hessian is available simply from the gradient.

This begs the approximation r
2r « rrrrT (plus perhaps some small corrections),

which is the basis for several least squares algorithms.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Linear least squares

min
xP n

1
2

}rpxq}22 ,

When r is affine in x, i.e., rpxq “ rrTx ´ a where rr is independent of x, then
the Hessian,

r
2r “ rrrrT ,

is positive semi-definite. The stationary points x are defined by,

rrrrTx “ rra.

There is a unique stationary point if and only if r2rpxq ° 0.

Otherwise there are infinitely many stationary points, and each minimizes the
sum-of-squares residual.

In any case, the least squares solution above is equivalent to solving the linear
equation

rrTx “ a,

in the least squares sense.
A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Solution methods for linear least squares

rrrrTx “ rra.

rrTx “ a in least squares sense,

There are (at least) three common ways to solve linear least squares problems.
Assume initally that r

2r ° 0, implying that rrT is full-rank.
– The QR decomposition: with rrT “ QR the reduced QR decomposition of

rrT , then the staionary point is

x “ R´1QT a

This method is typically the easiest and most stable.
– The SVD: with rrT “ U⌃V T the economy SVD of rrT , then the stationary

point is,

x “ V ⌃´1UT a.

This method is slightly more expensive than QR, but is more useful if more
than the solution is desired.

– The Cholesky factorization: with r
2r “ LLT the Cholesky factorization of

r
2r, then the stationary point is,

x “ L´TL´1
rra

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Solution methods for linear least squares

rrrrTx “ rra.

rrTx “ a in least squares sense,

There are (at least) three common ways to solve linear least squares problems.
Assume initally that r

2r ° 0, implying that rrT is full-rank.
– The QR decomposition: with rrT “ QR the reduced QR decomposition of

rrT , then the staionary point is

x “ R´1QT a

This method is typically the easiest and most stable.
– The SVD: with rrT “ U⌃V T the economy SVD of rrT , then the stationary

point is,

x “ V ⌃´1UT a.

This method is slightly more expensive than QR, but is more useful if more
than the solution is desired.

– The Cholesky factorization: with r
2r “ LLT the Cholesky factorization of

r
2r, then the stationary point is,

x “ L´TL´1
rra

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Solution methods for linear least squares

rrrrTx “ rra.

rrTx “ a in least squares sense,

There are (at least) three common ways to solve linear least squares problems.
Assume initally that r

2r ° 0, implying that rrT is full-rank.
– The QR decomposition: with rrT “ QR the reduced QR decomposition of

rrT , then the staionary point is

x “ R´1QT a

This method is typically the easiest and most stable.
– The SVD: with rrT “ U⌃V T the economy SVD of rrT , then the stationary

point is,

x “ V ⌃´1UT a.

This method is slightly more expensive than QR, but is more useful if more
than the solution is desired.

– The Cholesky factorization: with r
2r “ LLT the Cholesky factorization of

r
2r, then the stationary point is,

x “ L´TL´1
rra

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Rank-deficient linear least squares, I

rrrrTx “ rra.

rrTx “ a in least squares sense,

Now assume r
2r is rank deficient (and hence rrT does not have full column rank).

There are infinitely many stationary points/solutions. Which to select?

One option is to select the “simplest” solution:

min
x

}x}22 such that 1
2

}rpxq}22 is minimized.

Such a solution is a minimum norm solution to the least squares problem.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Rank-deficient linear least squares, II

min
x

}x}22 such that 1
2

}rpxq}22 is minimized.

We assume r
2r is rank deficient, and hence rankrrT “ s † n.

Again, linear algebra comes to the rescue. There are two ways to compute this
solution:

– The QR decomposition: with the reduced QR decomposition,

rrT “ QR, Q P mˆs, R P sˆs

then x “ R´1QT a is the minimum norm solution.
– The SVD: with the reduced SVD,

rrT “ U⌃V T , U P m ˆ s, ⌃ P sˆs, V P nˆs,

then

x “ V ⌃´1UT a “: prrT q`a,

is the minimum norm solution. The matrix prrT q` is the Moore-Penrose

pseudoinverse of rrT .

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Rank-deficient linear least squares, II

min
x

}x}22 such that 1
2

}rpxq}22 is minimized.

We assume r
2r is rank deficient, and hence rankrrT “ s † n.

Again, linear algebra comes to the rescue. There are two ways to compute this
solution:

– The QR decomposition: with the reduced QR decomposition,

rrT “ QR, Q P mˆs, R P sˆs

then x “ R´1QT a is the minimum norm solution.
– The SVD: with the reduced SVD,

rrT “ U⌃V T , U P m ˆ s, ⌃ P sˆs, V P nˆs,

then

x “ V ⌃´1UT a “: prrT q`a,

is the minimum norm solution. The matrix prrT q` is the Moore-Penrose

pseudoinverse of rrT .

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Back to nonlinear problems: Gauss-Newton

min
xP n

1
2

}rpxq}22 ,

with

rpxq :“ pr1pxq, . . . , rM pxqqT , rmpxq “ ym ´ ypcm;xq,
where now we assume f is not affine in x.

The Gauss-Newton method uses an approximate Hessian to perform a Newton-type
update. The approximation employed is,

r
2rpxq “ rrpxqrrpxqT `

Mÿ

m“1

rmpxqr2rpxq « rrpxqrrpxqT ,

The corresponding update uses a stepsize ↵k, acknowledging that the Newton
direction is approximate:

xk`1 “ xk ´ ↵kdk, dk “ ´
´
rrpxkqrrpxkqT

¯´1
rrpxkqrpxkq

where ↵k is typically chosen via the Armijo/Wolfe/Goldstein conditions.
A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Back to nonlinear problems: Gauss-Newton

min
xP n

1
2

}rpxq}22 ,

with

rpxq :“ pr1pxq, . . . , rM pxqqT , rmpxq “ ym ´ ypcm;xq,
where now we assume f is not affine in x.

The Gauss-Newton method uses an approximate Hessian to perform a Newton-type
update. The approximation employed is,

r
2rpxq “ rrpxqrrpxqT `

Mÿ

m“1

rmpxqr2rpxq « rrpxqrrpxqT ,

The corresponding update uses a stepsize ↵k, acknowledging that the Newton
direction is approximate:

xk`1 “ xk ´ ↵kdk, dk “ ´
´
rrpxkqrrpxkqT

¯´1
rrpxkqrpxkq

where ↵k is typically chosen via the Armijo/Wolfe/Goldstein conditions.
A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Gauss-Newton as “local” linear least squares

min
xP n

1
2

}rpxq}22 ,

with

rpxq :“ pr1pxq, . . . , rM pxqqT , rmpxq “ ym ´ ypcm;xq,
where now we assume y is not affine in x.

Gauss-Newton is equivalently a linear least squares problem, where r is
approximated by its linear approximation at step xk:

rpxq « rkpxq :“ rpxkq ` prrpxkqqT px ´ xkq.
Using this approximation, one could exactly solve, obtaining

xk`1 “ argmin
x

rkpxq “ xk ´
´
rrpxkqrrpxkqT

¯´1
rrpxkqrpxkq.

But recognizing that this is an approximation, we introduce a stepsize:

xk`1 “ xk ´ ↵k

´
rrpxkqrrpxkqT

¯´1
rrpxkqrpxkq.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Advantages of Gauss-Newton

The Gauss-Newton algorithm is an attractive one:
– Only gradients/Jacobians are required to compute an approximate Hessian,

and this is often a fairly good approximation.
– The Jacobian can be sparse in large-scale applications
– The direction for update is actually a descent direction:

dTk r

ˆ
1
2

}r}22
˙

“ dTk prrpxkqqrpxkq “ ´dTk
´
rrpxkqrrpxkqT

¯
dk § 0

Gauss-Newton has weaker convergence guarantees than some of the previous
methods we have seen.

One weakness is that if the Jacobian rr is near-singular, the step lengths ↵k

become very small.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

The Levenberg-Marquardt method

The Levenberg-Marquardt method is, in one interpretation, a trust region analogue
of Gauss-Newton:

We solve the linearized problem in a trust region:

min
d

1
2

}rrpxkqT d ` rpxkq}22, subject to }d} § �k.

By KKT, the solution to this problem is a pd,�q satisfying,
´
rrpxkqrrpxkqT ` �I

¯
d “ ´rrpxkqrpxkq,

�p}d} ´ �kq “ 0,

I.e., unless the Gauss-Newton algorithm descent point satisfies }d} § �, then we
solve the regularized Gauss-Newton problem,

´
rrpxkqrrpxkqT ` �I

¯
d “ ´rrpxkqrpxkq,

where � is computed approximately.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

The Levenberg-Marquardt method

The Levenberg-Marquardt method is, in one interpretation, a trust region analogue
of Gauss-Newton:

We solve the linearized problem in a trust region:

min
d

1
2

}rrpxkqT d ` rpxkq}22, subject to }d} § �k.

By KKT, the solution to this problem is a pd,�q satisfying,
´
rrpxkqrrpxkqT ` �I

¯
d “ ´rrpxkqrpxkq,

�p}d} ´ �kq “ 0,

I.e., unless the Gauss-Newton algorithm descent point satisfies }d} § �, then we
solve the regularized Gauss-Newton problem,

´
rrpxkqrrpxkqT ` �I

¯
d “ ´rrpxkqrpxkq,

where � is computed approximately.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

GN and LM

The Levenberg-Marquardt method ameliorates some of the small step sizes taken
by the Gauss-Newton method when the gradient/Jacobian is ill-conditioned.

When the iterates get “close” to a local minimum, the Levenberg-Marquardt
method reduces to Gauss-Newton. (The trust region constraint is inactive.)

If the local minimum x˚ satisfies r
2rpx˚q « rrpx˚qrrpx˚qT , then both methods

have quadratic convergence behavior near the minimum.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Large least squares problems

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Large least squares

E.g., in machine learning, large least squares problems arise given data
pcm, ymqmPrMs,

min
xP n

1
2

}rpxq}22 , rmpxq “ ym ´ ypcm;xq,

which we’ll rewrite in a more natural form for this discussion:

min
xP n

fpxq, fpxq “
ÿ

mPrMs
fmpxq

We are interested in the case when M " 1.

We’ve seen that computing the gradient,

rfpxq “
ÿ

mPrMs
rfmpxq,

is a necessary component of several algorithms. When M " 1, there are algorithmic
strategies to make this more efficient.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Stochastic gradient descent

min
xP n

ÿ

mPrMs
fmpxq

Computing the full (“batch”) gradient can be approximated by a single component,
ÿ

mPrMs
rfmpxq « rfipxq, i P rM s,

and then rfipxq is used as a gradient in optimization.

This is stochastic/incremental gradient descent. Two strategies to compute i:
– Cyclic: On iteration k, choose i “ 1 ` pk ´ 1 mod Mq.

Typically also randomly shuffle fi after each cycle.
– Randomized : Choose i P rM s uniformly at random. This strategy is appealing

since,

rfipxq “ 1
M

rf.

I.e., this produces an unbiased statistical estimator for rf .

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Stochastic gradient descent

min
xP n

ÿ

mPrMs
fmpxq

Computing the full (“batch”) gradient can be approximated by a single component,
ÿ

mPrMs
rfmpxq « rfipxq, i P rM s,

and then rfipxq is used as a gradient in optimization.

This is stochastic/incremental gradient descent. Two strategies to compute i:
– Cyclic: On iteration k, choose i “ 1 ` pk ´ 1 mod Mq.

Typically also randomly shuffle fi after each cycle.
– Randomized : Choose i P rM s uniformly at random. This strategy is appealing

since,

rfipxq “ 1
M

rf.

I.e., this produces an unbiased statistical estimator for rf .

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Stepsizes

min
xP n

ÿ

mPrMs
fmpxq,

Assuming a vanilla stochastic gradient descent update,

xk`1 “ xk ´ ↵krfipxkq,
it remains to choose ↵k.

Even for very nice problems, SGD may not converge without a controlled decay of
↵k.

E.g.,

M “ 2, f1pxq “ px ´ 1q2, f2pxq “ px ` 1q2,
with ↵k chosen via exact linesearch. With x0 “ 0.5 and no termination, the SGD
iterates satisfy,

´2 “ lim inf
k

pxk`1 ´ xkq † lim sup
k

pxk`1 ´ xkq “ `2, with probability 1,

lim
kÒ8

fpxkq “ 4 ° min
x

fpxq “ 2

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Stepsizes

min
xP n

ÿ

mPrMs
fmpxq,

Assuming a vanilla stochastic gradient descent update,

xk`1 “ xk ´ ↵krfipxkq,
it remains to choose ↵k.

Even for very nice problems, SGD may not converge without a controlled decay of
↵k.

E.g.,

M “ 2, f1pxq “ px ´ 1q2, f2pxq “ px ` 1q2,
with ↵k chosen via exact linesearch. With x0 “ 0.5 and no termination, the SGD
iterates satisfy,

´2 “ lim inf
k

pxk`1 ´ xkq † lim sup
k

pxk`1 ´ xkq “ `2, with probability 1,

lim
kÒ8

fpxkq “ 4 ° min
x

fpxq “ 2

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Stepsizes

The stepsizes ↵k are therefore not necessarily chosen via classical stepsize criteria
(e.g., Wolfe, Goldstein), but are instead chosen with some decaying behavior, e.g.,

↵k “ 1
k
.

In order to prove convergence, the stepsizes ↵k must be chosen so that

– they do decay: ↵k
kÑ8›››Ñ 0

– they do not decay too quickly:
∞

k ↵k “ 8

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Convergence

Typically, if
– f has bounded gradient and is convex
– stepsizes ↵k are chosen to decay appropriately

Then if x˚ is a local minimum, for SGD one obtains

fpxkq ´ fpx˚q “ Op1{
?
kq.

Note that for such fixed stepsizes with standard gradient descent, we have

fpxkq ´ fpx˚q “ Op1{kq.

Hence, SGD converges slower than vanilla gradient descent.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Mini-batches

GD and SGD live on opposite ends of the spectrum in terms of data usage:
– GD uses all the data in one iteration
– SGD uses a single piece of data in one iteration

Mini-batch SGD uses P ! M pieces of data:

min
xP n

ÿ

mPrMs
fmpxq

ÿ

mPrMs
rfmpxq «

ÿ

mPS
rfmpxq, S Ä rM s, |S| “ P ! M

This attempts to mitigate randomized oscillations of SGD, but requires more
computational effort and memory management.

Mini-batch SGD generally does not improve convergence characteristics of SGD.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Stochastic gradient descent

SGD is attractive because,
– it is very efficient (in memory and computation)
– approximate solutions are often good enough in practice
– theory exists and guarantees convergence, although there are still many open

questions.
Using SGD comes with some drawbacks:

– convergence is slower, more fickle, than GD
– SGD because well away from minimizers, but performs relatively poorly close

to them
– in much (not all) practice, one typically uses fixed stepsizes, contrary to theory

SGD is often paired with other approaches to improve convergence.
– Acceleration
– Adaptive stepsizes

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Stochastic gradient descent

SGD is attractive because,
– it is very efficient (in memory and computation)
– approximate solutions are often good enough in practice
– theory exists and guarantees convergence, although there are still many open

questions.
Using SGD comes with some drawbacks:

– convergence is slower, more fickle, than GD
– SGD because well away from minimizers, but performs relatively poorly close

to them
– in much (not all) practice, one typically uses fixed stepsizes, contrary to theory

SGD is often paired with other approaches to improve convergence.
– Acceleration
– Adaptive stepsizes

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Stochastic gradient descent

SGD is attractive because,
– it is very efficient (in memory and computation)
– approximate solutions are often good enough in practice
– theory exists and guarantees convergence, although there are still many open

questions.
Using SGD comes with some drawbacks:

– convergence is slower, more fickle, than GD
– SGD because well away from minimizers, but performs relatively poorly close

to them
– in much (not all) practice, one typically uses fixed stepsizes, contrary to theory

SGD is often paired with other approaches to improve convergence.
– Acceleration
– Adaptive stepsizes

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Acceleration techniques

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Acceleration techniques

Acceleration techniques attempt to improve convergence of gradient descent
methods. They frequently attempt to address noisy gradients and poorly scaled
problems.

Momentum (and variants thereof) is perhaps the most widely used acceleration
technique.

The basic idea is as follows: while we take discrete steps with gradient descent,

xk`1 “ xk ´ ↵krfpxkq,

as ↵k Ó 0, this can be interpreted as gradient flow, a differential equation limit:

d
dt

xptq “ ´rfpxq,

where f is now intepreted as a potential function.

When f is non-smooth, the trajectory oscillates, much like a poorly scaled gradient
descent.

The idea to “fix” this is to impart physical momentum, or a type of viscous drag, to
the problem.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Acceleration techniques

Acceleration techniques attempt to improve convergence of gradient descent
methods. They frequently attempt to address noisy gradients and poorly scaled
problems.

Momentum (and variants thereof) is perhaps the most widely used acceleration
technique.

The basic idea is as follows: while we take discrete steps with gradient descent,

xk`1 “ xk ´ ↵krfpxkq,

as ↵k Ó 0, this can be interpreted as gradient flow, a differential equation limit:

d
dt

xptq “ ´rfpxq,

where f is now intepreted as a potential function.

When f is non-smooth, the trajectory oscillates, much like a poorly scaled gradient
descent.

The idea to “fix” this is to impart physical momentum, or a type of viscous drag, to
the problem.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Momentum gradient descent, I

We therefore rewrite our system as a second-order system:

d2

dt2
x ` a

d
dt

x “ ´rf,

which follows the force produced by the potential f , subject to a viscous drag a ° 0.

Rewriting this in a system of first-order equations, we introduce a velocity v “ d
dtx,

obtaining:

d
dt

x “ v

d
dt

v “ ´↵v ´ rf.

This system is triangular, so we will use a semi-implicit scheme to perform updates.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Momentum gradient descent, II

d
dt

x “ v (1a)

d
dt

v “ ´↵v ´ rf. (1b)

If we are able to update vk`1, we update xk using the new value:

xk`1 “ xk ` p�tqvk`1.

We update vk`1 using an exponential time integrator :

vk`1 “ e´↵�tvk ´ �trfpxkq.

Why use semi-implicit and exponential time integrators? The system (1) can be
stiff, and these techniques are standard numerical procedures to mitigate stiffness.

With appropriate rescaling, the momentum update is given by,

vk`1 “ ↵vk ´ ⌘rfpxkq,
xk`1 “ xk ` vk`1.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Momentum gradient descent, II

d
dt

x “ v (1a)

d
dt

v “ ´↵v ´ rf. (1b)

If we are able to update vk`1, we update xk using the new value:

xk`1 “ xk ` p�tqvk`1.

We update vk`1 using an exponential time integrator :

vk`1 “ e´↵�tvk ´ �trfpxkq.

Why use semi-implicit and exponential time integrators? The system (1) can be
stiff, and these techniques are standard numerical procedures to mitigate stiffness.

With appropriate rescaling, the momentum update is given by,

vk`1 “ ↵vk ´ ⌘rfpxkq,
xk`1 “ xk ` vk`1.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Momentum gradient descent, III

vk`1 “ ↵vk ´ ⌘rfpxkq,
xk`1 “ xk ` vk`1.

Note that since ↵ “ expp´a�tq, we choose ↵ P p0, 1q.
The “�t” that was in front of vk`1 can be omitted by rescaling ⌘ and ↵.

Empirically, choosing ⌘ approprpiately has a bigger impact on convergence than the
choice of ↵.

In line with previously stated convergence guarantees of SGD, one typically also
imposes a decrease on ⌘ in time.

A common interpretation of momentum GD is as a particle subject to drag due to
momentum.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

The decay parameter ↵

vk`1 “ ↵vk ´ ⌘rfpxkq,
xk`1 “ xk ` vk`1.

The effect of the parameter ↵ can be understood via a simple scenario:

Assume zero initial velocity rfpxkq is constant in k, say y “ rfpxkq. Then a
direct calculation shows:

vk “ ´⌘y
k´1ÿ

j“0

↵j ùñ lim
kÒ8

}vk}2 “ ⌘
1 ´ ↵

}y}2,

i.e., the terminal velocity of x is proportional to 1{p1 ´ ↵q, giving guidance on how
to set ↵.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Nesterov’s accelerated GD

A somewhat different scheme for accelerating GD is due to Nesterov. The update
scheme is as follows:

yk`1 “ xk ´ ⌘rfpxkq,
xk`1 “ p1 ´ �kqxk ` �kyk`1,

where ⌘ is tunable, and �k is a sequence defined as,

�k “ 1 ´ �k

�k`1
§ 0, �k`1 “ 1 `

a
1 ` 4�2

k

2
,

with �0 “ 0.

What is surprising about this scheme is that (a) the xk`1 update is a bit
unexpected since �k § 0, and (b) the method converges like 1{k2. (Unaccelerated
convergence is „ 1{k.)

This method as written is not tooo transparent. But it turns out this is equivalent
to a type of momentum approach.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Nesterov’s accelerated GD

A somewhat different scheme for accelerating GD is due to Nesterov. The update
scheme is as follows:

yk`1 “ xk ´ ⌘rfpxkq,
xk`1 “ p1 ´ �kqxk ` �kyk`1,

where ⌘ is tunable, and �k is a sequence defined as,

�k “ 1 ´ �k

�k`1
§ 0, �k`1 “ 1 `

a
1 ` 4�2

k

2
,

with �0 “ 0.

What is surprising about this scheme is that (a) the xk`1 update is a bit
unexpected since �k § 0, and (b) the method converges like 1{k2. (Unaccelerated
convergence is „ 1{k.)

This method as written is not tooo transparent. But it turns out this is equivalent
to a type of momentum approach.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Nesterov’s accelerated GD as momentum

The Nesterov accelerated GD algorithm can actually be written as a type of
momentum:

vk`1 “ ↵vk ´ ⌘rfpxk ` ↵vkq,
xk`1 “ xk ` vk`1.

The only difference between this and the “classical” momentum technique is where
the gradient is evaluated: Nesterov’s approach is somewhat of a predictor-corrector
scheme, using gradients computed from taking a particular step.

This seemingly small change to momentum can make a big difference in practice.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Adaptive learning rate techniques

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Adaptive learning rates

Acceleration strategies for optimization work, but only so much improvement can
be achieved since empirically one observes that the learning rate is often the issue.

Even more problematic is that the update,

xk`1 “ xk ´ ↵krfpxkq,

imposes an identical learning rate ↵k on all components of xk.

In practice, different components of ↵k have different scaling and sensitivity to
learning rate.

Thus, it makes sense to do something more like,

xk`1 “ xk ´ ↵k d rfpxkq, ↵k P n,

where d is the elementwise product between vectors.

This is the basis of adaptive methods.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

A simple adaptation

Let us use the adaptive update,

xk`1 “ xk ´ ↵k d rfpxkq.

Here is one idea that works reasonably well:
We update the jth component of ↵k as follows:

– If signprfpxkqqj “ signprfpxk`1qqj , component j is updating in a consistent
way across k: make p↵kqj larger.

– If signprfpxkqqj ‰ signprfpxk`1qqj , component j is updating in an
oscillatory fashion: make p↵kqj smaller.

The above is called the delta-bar-delta algorithm, and works reasonably well.

The problem is that it typically works well only for full (batch) GD approaches.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Adagrad

A modern slew of adaptive learning techniques starts with an Adaptive Gradient, or
Adagrad method.

Idea: use history of gradients
– Components j with large gradient history should have small learning rates
– Components j with small gradient history should have large learning rates

I.e., this attempts to mitigate poorly scaled convex problems. In details, we
initialize a gradient norm history h0 “ 0, and iterate:

gk “ rfpxkq
hk “ hk´1 ` gk d gk,

↵k “ ⌘

� ` ?
hk

,

xk`1 “ xk ´ ↵kgk,

where ⌘ is a fixed (initial) learning rate, and � ° 0 is a small factor to prevent
divide-by-zero.

Adagrad is very successful for convex (or locally convex) problems where the
gradient behavior does not change wildly.

It is less successful for non-convex problems.
A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Adagrad

A modern slew of adaptive learning techniques starts with an Adaptive Gradient, or
Adagrad method.

Idea: use history of gradients
– Components j with large gradient history should have small learning rates
– Components j with small gradient history should have large learning rates

I.e., this attempts to mitigate poorly scaled convex problems. In details, we
initialize a gradient norm history h0 “ 0, and iterate:

gk “ rfpxkq
hk “ hk´1 ` gk d gk,

↵k “ ⌘

� ` ?
hk

,

xk`1 “ xk ´ ↵kgk,

where ⌘ is a fixed (initial) learning rate, and � ° 0 is a small factor to prevent
divide-by-zero.

Adagrad is very successful for convex (or locally convex) problems where the
gradient behavior does not change wildly.

It is less successful for non-convex problems.
A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

RMSProp

RMSProp was developed to mitigate problems with keeping the gradient norm
history. The main innovation is essentially to use momentum decay to decrease
long-time gradient norms:

hk “ ⇢hk´1 ` p1 ´ ⇢qpgk d gkq,

where ⇢ P p0, 1q is a momenutm decay parameter. The first term essentially
imposes the exponential decay,

d
dt

h “ plog ⇢qh,

which forces decay of h.

This imposes and exponential decay on the history of gradient norms, mitigating
issues with non-convex optimization when the gradient behaves differently at the
start of optimization compared to the end.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Adadelta, I

The Adadelta method also aims to improve the long history weakness of Adagrad
for non-convex problems.

Adadelta makes two innovations:
– Imposes momentum-based exponential decay on the gradient norms
– Uses “correct” units in the update

The first innovation is essentially RMSProp: with ⇢ P p0, 1q a momentum decay
parameter, update the gradient norm history as,

hk “ ⇢hk´1 ` p1 ´ ⇢qpgk d gkq.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Adadelta, II

The second innovation Adadelta employs is the following: if we simply used our new
gradient norm history, we would do,

↵k “ ⌘

� ` ?
hk

,

xk`1 “ xk ´ ↵kgk.

The Adadelta philosophy is that the highlighted term has the wrong units: it’s
dimensionless.

To fix this, change the units of ⌘ to be the units of x in a “smart” way:

Xk “ ⇢Xk´1 ` ⌘2

¨

˚̊
˚̋p↵k d gkql jh n

“�x2
k

dp↵k d gkq

˛

‹‹‹‚,

⌘ –
a
� ` Xk d Xk.

Thus, Adagrad simultaneously imposes strong decay on gradient norms, and
changes the learning to be unit-consistent.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Adam

The last adaptation strategy we’ll discuss is one with adaptive moments, or Adam.

Adam keeps a decaying history of both the second (uncentered moment) h, and the
first moment m:

hk “ ⇢hk´1 ` p1 ´ ⇢qpgk d gkq,mk “ r⇢mk´1 ` p1 ´ r⇢qmk,

where mk is interpretable as a momentum.

Using initializations h0 “ m0 “ 0, one can show that these are 0-biased estimates
of these moments, which can be corrected via,

rhk “ hk

1 ´ ⇢k
, rmk “ mk

1 ´ r⇢k .

The full update is then,

xk`1 “ xk ´ ⌘

� ` ?
hk

mk.

Adam empirically is a bit robust in selection of ⌘, �.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

Acceleration and adaptation

It is common to use a combination of acceleration and adaptation strategies, e.g.,
RMSProp and Nesterov momentum are often used together.

Most of these algorithms are written with the full batch gradient, but are really
designed to work with mini-batch or stochastic GD versions to exploit efficiency.

Which algorithm(s) to use? There isn’t really a consensus, and this typically boils
down to specifics of a problem. E.g., Adam is used frequently at first due to its
hyperparameter robustness.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

References I

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Marc’ aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc Le,
and Andrew Ng, Large Scale Distributed Deep Networks, Advances in Neural
Information Processing Systems, vol. 25, Curran Associates, Inc., 2012.

John Duchi, Elad Hazan, and Yoram Singer, Adaptive Subgradient Methods

for Online Learning and Stochastic Optimization, Journal of Machine Learning
Research 12 (2011), no. 61, 2121–2159.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, MIT
Press, 2016.

Robert A. Jacobs, Increased rates of convergence through learning rate

adaptation, Neural Networks 1 (1988), no. 4, 295–307.

Diederik P. Kingma and Jimmy Ba, Adam: A Method for Stochastic

Optimization, arXiv:1412.6980 [cs] (2017), arXiv: 1412.6980.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust Stochastic

Approximation Approach to Stochastic Programming, SIAM Journal on
Optimization 19 (2009), no. 4, 1574–1609.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

References II

Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course,
Springer Science & Business Media, 2013.

Yurii E Nesterov, A method for solving the convex programming problem with

convergence rate O (1/k^ 2), Dokl. akad. nauk Sssr, vol. 269, 1983,
pp. 543–547.

Jorge Nocedal and S. Wright, Numerical Optimization, 2 ed., Springer Series
in Operations Research and Financial Engineering, Springer-Verlag, New York,
2006.

B. T. Polyak, Some methods of speeding up the convergence of iteration

methods, USSR Computational Mathematics and Mathematical Physics 4
(1964), no. 5, 1–17.

James C. Spall, Introduction to Stochastic Search and Optimization:

Estimation, Simulation, and Control, John Wiley & Sons, March 2005.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton, On the

importance of initialization and momentum in deep learning, Proceedings of
the 30th International Conference on Machine Learning, PMLR, 2013, ISSN:
1938-7228, pp. 1139–1147.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

References III

Matthew D. Zeiler, ADADELTA: An Adaptive Learning Rate Method,
arXiv:1212.5701 [cs] (2012), arXiv: 1212.5701.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, II

