Math 6880/7875: Advanced Optimization Descent algorithms, Part I

Akil Narayan<sup>1</sup>

<sup>1</sup>Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute University of Utah

Feburary 8, 2022





A foundational computational algorithmic idea for unconstrained + smooth optimization is a descent method.

Many optimization tools are variants of descent methods. We'll tour such methods.

- The basic descent method
- First- and second-order methods
- Convergence guarantees
- quasi-Newton methods
- Trust region methods

## The descent method

#### Consider the unconstrained optimization,

## $\min_{x \in \mathbb{R}^n} f(x)$

#### When we cannot solve this analytically, algorithms are our recourse.

Most optimization algorithms are *iterative*, meaning that an initial guess is repeatedly improved.

The most common method for performing the "improvement" is to geometrically travel in a descent direction.

#### Definition

Given a continuous function f and a point  $x_0 \in \mathbb{R}^n$ , a vector  $d \in \mathbb{R}^n$  is a *descent direction* for f at  $x_0$  if, there exists some  $\epsilon = \epsilon(f, x_0, d) > 0$  such that,

$$f(x_0 + \delta d) < f(x_0), \quad \forall \ 0 < \delta \leq \epsilon.$$

If  $x_0$  is a local minimum, there are no descent directions.

### The descent method

Consider the unconstrained optimization,

 $\min_{x \in \mathbb{R}^n} f(x)$ 

When we cannot solve this analytically, algorithms are our recourse.

Most optimization algorithms are *iterative*, meaning that an initial guess is repeatedly improved.

The most common method for performing the "improvement" is to geometrically travel in a descent direction.

#### Definition

Given a continuous function f and a point  $x_0 \in \mathbb{R}^n$ , a vector  $d \in \mathbb{R}^n$  is a *descent direction* for f at  $x_0$  if, there exists some  $\epsilon = \epsilon(f, x_0, d) > 0$  such that,

$$f(x_0 + \delta d) < f(x_0), \quad \forall \ 0 < \delta \leq \epsilon.$$

If  $x_0$  is a local minimum, there are no descent directions.

#### Some pseudocode

The anatomy of essentially every descent method is as follows:

- 1. Begin with an initial guess  $x_0$ , set k = 0
- 2. Identify a descent direction  $d_k$  at  $x_k$
- 3. Identify a stepsize  $\alpha_k > 0$
- 4. Define  $x_{k+1} = x_k + \alpha_k d_k$
- 5. If  $x_{k+1}$  is good enough, stop. Otherwise set  $k \leftarrow k+1$ , return to step 2.

Things in blue are crucial decisions/inputs to the algorithm:

- An initial guess  $x_0$
- A strategy for computing a descent direction  $d_k$
- A strategy for computing a stepsize  $\alpha_k$
- A way to determine when an iterate has converged, terminating the algorithm

#### Some pseudocode

The anatomy of essentially every descent method is as follows:

- 1. Begin with an initial guess  $x_0$ , set k = 0
- 2. Identify a descent direction  $d_k$  at  $x_k$
- 3. Identify a stepsize  $\alpha_k > 0$
- 4. Define  $x_{k+1} = x_k + \alpha_k d_k$
- 5. If  $x_{k+1}$  is good enough, stop. Otherwise set  $k \leftarrow k+1$ , return to step 2.

Things in blue are crucial decisions/inputs to the algorithm:

- An initial guess  $x_0$
- A strategy for computing a descent direction  $d_k$
- A strategy for computing a stepsize  $\alpha_k$
- A way to determine when an iterate has converged, terminating the algorithm

## Initial guess and termination

Strategies for initial guess and termination criteria are in some sense the easiest to describe.

Common termination strategies:

- $||x_k x_{k-1}|| < \epsilon$  (Does this imply  $x_k$  is close to optimal?)
- $|f(x_k) f(x_{k-1})| < \epsilon$  (Does this imply  $f(x_k)$  is close to optimal?)
- $\|\nabla f(x_k)\| < \epsilon$  (Does this imply  $x_k$  is close to stationary?)
- Combinations of the above

Frequently there is not a clear "good" choice.

## Initial guess and termination

Strategies for initial guess and termination criteria are in some sense the easiest to describe.

Common initialization strategies:

- Start "close" to a local or global minimum
- Repitition: choose several initializations, optimize for all of them
- Randomization: randomly choose  $x_0$

```
Homotopy: Let f<sub>m</sub>, m > 0 be some sequence of functions such that f<sub>m</sub> → f in an appropriate sense.
Choose x<sub>0</sub>, optimize f<sub>1</sub> resulting in optimum x̃<sub>1</sub>.
Set x<sub>0</sub> = x̃<sub>1</sub>, optimize f<sub>2</sub> resulting in optimum x̃<sub>2</sub>.
...
This is sensible if f<sub>m</sub> for small m is easier to optimize than f.
```

## Initial guess and termination

Strategies for initial guess and termination criteria are in some sense the easiest to describe.

Deciding on a descent direction and stepsize are typically the meat of developing good optimization algorithms.

# The "classical" stuff

#### Descent directions

$$x_{k+1} = x_k + \alpha_k d_k.$$

We assume  $d_k$  is a descent direction, and for smooth f this is the same as,  $d_k^T \nabla f(x_k) < 0.$ 

Nearly all descent algorithms use an update direction given by,

$$d_k = -G_k^{-1} \nabla f(x_k),$$

where  $G_k$  is some symmetric, positive-definite matrix. (Note this condition on  $G_k$  guarantees  $d_k$  is a diescent direction.) For example:

- Steepest/Gradient descent:  $G_k = I$
- Newton's method:  $G_k = \nabla^2 f(x_k)$
- quasi-Newton methods:  $G_k \approx \nabla^2 f(x_k)$

#### Descent directions

$$x_{k+1} = x_k + \alpha_k d_k.$$

We assume  $d_k$  is a descent direction, and for smooth f this is the same as,

$$d_k^T \nabla f(x_k) < 0.$$

Nearly all descent algorithms use an update direction given by,

$$d_k = -G_k^{-1} \nabla f(x_k),$$

where  $G_k$  is some symmetric, positive-definite matrix. (Note this condition on  $G_k$  guarantees  $d_k$  is a diescent direction.) For example:

- Steepest/Gradient descent:  $G_k = I$
- Newton's method:  $G_k = \nabla^2 f(x_k)$
- quasi-Newton methods:  $G_k \approx \nabla^2 f(x_k)$

Steepest/gradient descent

$$x_{k+1} = x_k + \alpha_k d_k.$$

The direction  $d_k$  is chosen to infinitesimally decrease f the fastest:

$$d_k = -\nabla f(x_k).$$

Note that steepest descent need not be a good idea.



Steepest/gradient descent

$$x_{k+1} = x_k + \alpha_k d_k.$$

The direction  $d_k$  is chosen to infinitesimally decrease f the fastest:

$$d_k = -\nabla f(x_k).$$

Note that steepest descent need not be a good idea.



#### Steepest descent is first-order

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

Steepest descent can be understood as a first-order Taylor expansion. First approximate:

$$f(x) \approx f(x_k) + (x - x_k)^T \nabla f(x_k),$$

and choose x so that  $(x - x_k)^T \nabla f(x_k)$  is minimized for fixed  $||x - x_k||$ :

$$d_k = x - x_k = -\nabla f(x_k)$$

## Scaling

One reason why steepest descent tends to produce poor iterates is because problems can be poorly scaled.

Consider

$$f(x) = x^T \begin{pmatrix} 10 & 0 \\ 0 & 1 \end{pmatrix} x.$$

The global minimum is x = 0, but starting at x = (0.5, 1) produces pretty bad descent directions.

Steepest descent is not *scale invariant*.

A simple strategy to mitigate poor scaling is diagonal scaling:

 $\min f(x) \longrightarrow \min g(x),$ 

where g(x) = f(Dx), with D a positive-definite diagonal matrix.

The hard part is computing D (which can change at every iteration).

## Scaling

One reason why steepest descent tends to produce poor iterates is because problems can be poorly scaled.

Consider

$$f(x) = x^T \begin{pmatrix} 10 & 0 \\ 0 & 1 \end{pmatrix} x.$$

The global minimum is x = 0, but starting at x = (0.5, 1) produces pretty bad descent directions.

Steepest descent is not *scale invariant*.

A simple strategy to mitigate poor scaling is diagonal scaling:

$$\min f(x) \quad \longrightarrow \quad \min g(x),$$

where g(x) = f(Dx), with D a positive-definite diagonal matrix.

The hard part is computing D (which can change at every iteration).

There are two equivalent ways to derive Newton's method.

For simplicity, we'll assume  $\nabla^2 f(x_k) > 0$ .

There are two equivalent ways to derive Newton's method.

For simplicity, we'll assume  $\nabla^2 f(x_k) > 0$ .

The first derivation: approximate f with a second-order Taylor expansion and minimize:

$$f(x) \approx f(x_k) + d\nabla f(x_k) + \frac{1}{2}d^T \nabla^2 f(x_k)d, \qquad d = x - x_k.$$

There are two equivalent ways to derive Newton's method.

For simplicity, we'll assume  $\nabla^2 f(x_k) > 0$ .

The first derivation: approximate f with a second-order Taylor expansion and minimize:

$$f(x) \approx f(x_k) + d\nabla f(x_k) + \frac{1}{2}d^T \nabla^2 f(x_k)d, \qquad d = x - x_k.$$

The right-hand side is a strictly convex function of d, so can be exactly minimized:

$$d = -\left(\nabla^2 f(x_k)\right)^{-1} \nabla f(x_k).$$

Note that this relies on positive-definiteness of the Hessian, suggesting that this is only a good idea if f is locally convex around  $x_k$ ....

There are two equivalent ways to derive Newton's method.

For simplicity, we'll assume  $\nabla^2 f(x_k) > 0$ .

The second derivation: Let's use Newton's method for nonlinear root-finding to compute stationary points.

Define,

$$g(x) \coloneqq \nabla f(x) \longrightarrow \text{Solve for } x \colon g(x) = 0$$

Note that  $g : \mathbb{R}^n \to \mathbb{R}^n$ .

There are two equivalent ways to derive Newton's method.

For simplicity, we'll assume  $\nabla^2 f(x_k) > 0$ .

The second derivation: Let's use Newton's method for nonlinear root-finding to compute stationary points.

Define,

$$g(x) \coloneqq \nabla f(x) \longrightarrow \text{Solve for } x : g(x) = 0$$

Note that  $g : \mathbb{R}^n \to \mathbb{R}^n$ .

Given a current iterate  $x_k$ , Newton's method for rootfinding for g:

$$x_{k+1} = x_k - (\nabla g(x_k))^{-1} g(x_k).$$

The quantity  $\nabla g$  is a Jacobian matrix, with entries,

$$\nabla g(x) = \left(\frac{\partial}{\partial x_1} \nabla f(x) \ \frac{\partial}{\partial x_2} \nabla f(x) \ \cdots \ \frac{\partial}{\partial x_n} \nabla f(x)\right) = \nabla^2 f(x),$$

so that we have

$$x_{k+1} = x_k - \left(\nabla^2 f(x_k)\right)^{-1} \nabla f(x_k) \implies x_{k+1} - x_k = -\left(\nabla^2 f(x_k)\right)^{-1} \nabla f(x_k).$$

Note that Newton's method *exactly* minimizes positive-definite quadratic functions in a single step.

In particular, even poorly scaled quadratic functions are exactly minimized.

For this reason, Newton-type methods are called *scale invariant*.

Naturally there is a price to pay: computing  $\nabla^2 f$  is <u>much</u> more expensive than  $\nabla f$ .

Note that Newton's method *exactly* minimizes positive-definite quadratic functions in a single step.

In particular, even poorly scaled quadratic functions are exactly minimized.

For this reason, Newton-type methods are called *scale invariant*.

Naturally there is a price to pay: computing  $\nabla^2 f$  is <u>much</u> more expensive than  $\nabla f$ .

#### Stepsizes

We'll now discuss choosing stepsizes. Our update takes the form,

$$x_{k+1} = x_k + \alpha_k d_k.$$

We will always consider  $d_k$  to be a descent direction.

For notational simplicity, we'll assume k is fixed, and remove dependence of  $\alpha_k, d_k$  on k. I.e., we have,

$$x_{k+1} = x_k + \alpha d.$$

#### <u>Note</u>: $\alpha$ and d typically always depend on k!

Let's assume d is chosen and fixed (as a descent direction).

What are some common ways that  $\alpha$  is chosen?

#### Stepsizes

We'll now discuss choosing stepsizes. Our update takes the form,

$$x_{k+1} = x_k + \alpha_k d_k.$$

We will always consider  $d_k$  to be a descent direction.

For notational simplicity, we'll assume k is fixed, and remove dependence of  $\alpha_k, d_k$  on k. I.e., we have,

$$x_{k+1} = x_k + \alpha d.$$

<u>Note</u>:  $\alpha$  and d typically always depend on k!

Let's assume d is chosen and fixed (as a descent direction).

What are some common ways that  $\alpha$  is chosen?

#### Exact linesearch

The simplest approach is, unfortunately, the least practical.

Exact linesearch determines  $\alpha$  through an optimization,

 $\alpha = \operatorname*{arg\,min}_{\beta>0} f(x_k + \beta d).$ 

Things to note:

- The above problem is guaranteed to have a solution since d is a descent direction.
- This optimization is in principle much easier than the original problem: the above is a one-dimensional optimization instead of an n-dimensional one.
- This is still quite an expensive problem since several evaluations of f (and probably  $\nabla f$  are required)

Most popular approaches are inexact linesearch methods, based on various conditions.

#### Sufficient decrease

A particularly simple inexact method is that of sufficient decrease.

Locally near  $x_k$ , the function f behaves like its linear Taylor series,

$$f(x_k + \alpha d) \approx f(x_k) + \alpha d^T \nabla f(x_k).$$

This gives us an expected decrease: for a given small  $\alpha,$  the improvement in f is approximately,

$$f(x_k + \alpha d) - f(x_k) \approx \alpha d^T \nabla f(x_k).$$

Of course, unless we get lucky the actual decrease will be smaller than this.

Sufficient decrease, or the Armijo condition, imposes the following condition on  $\alpha$ :

$$f(x_k + \alpha d) - f(x_k) \leqslant c\alpha d^T \nabla f(x_k),$$

for a constant  $c \in (0, 1)$ . Choosing c is a bit of an art.

#### Sufficient decrease

A particularly simple inexact method is that of sufficient decrease.

Locally near  $x_k$ , the function f behaves like its linear Taylor series,

$$f(x_k + \alpha d) \approx f(x_k) + \alpha d^T \nabla f(x_k).$$

This gives us an expected decrease: for a given small  $\alpha$ , the improvement in f is approximately,

$$f(x_k + \alpha d) - f(x_k) \approx \alpha d^T \nabla f(x_k).$$

Of course, unless we get lucky the actual decrease will be smaller than this.

Sufficient decrease, or the Armijo condition, imposes the following condition on  $\alpha$ :

$$f(x_k + \alpha d) - f(x_k) \leq c \alpha d^T \nabla f(x_k),$$

for a constant  $c \in (0, 1)$ . Choosing c is a bit of an art.

### Backtracking

A very popular appraoch combines sufficient decrease with *backtracking*:

- Fix  $c, r \in (0, 1)$ . Initialize some "large"  $\alpha > 0$
- While sufficient decrease is *not* met, i.e.,  $f(x_k + \alpha d) f(x_k) > c\alpha d^T \nabla f(x_k)$ :
  - Set  $\alpha \leftarrow \alpha r$

The while loop must terminate if d is a descent direction. Typically,  $r = r_k$  is chosen in a problem-dependent way.

#### The Wolfe conditions

One problem with sufficient decrease + backtracking: values  $\alpha$  can be very small. To mitigate small step sizes, we impose a stronger pair of conditions on  $\alpha$ . One condition is again sufficient decrease,

$$f(x_k + \alpha d) - f(x_k) \leqslant c\alpha d^T \nabla f(x_k), \tag{1a}$$

the second is the additional condition:

$$d^{T}\nabla f(x_{k} + \alpha d) \ge \tilde{c}d^{T}\nabla f(x_{k}).$$
(1b)

#### for some other constant $\tilde{c} \in (c, 1)$ . The pair (1) are the Wolfe conditions.

The second, "curvature" Wolfe condition states that the one-dimensional function  $\alpha \mapsto f(x_k + \alpha d)$  is less steep at  $x_{k+1}$  compared to  $x_k$ .

If this less steep condition fails for small  $\alpha$ , it suggests that making  $\alpha$  larger can significantly decrease the objective.

#### The Wolfe conditions

One problem with sufficient decrease + backtracking: values  $\alpha$  can be very small. To mitigate small step sizes, we impose a stronger pair of conditions on  $\alpha$ . One condition is again sufficient decrease,

$$f(x_k + \alpha d) - f(x_k) \leqslant c\alpha d^T \nabla f(x_k), \tag{1a}$$

the second is the additional condition:

$$d^{T}\nabla f(x_{k} + \alpha d) \ge \tilde{c}d^{T}\nabla f(x_{k}).$$
(1b)

for some other constant  $\tilde{c} \in (c, 1)$ . The pair (1) are the Wolfe conditions.

The second, "curvature" Wolfe condition states that the one-dimensional function  $\alpha \mapsto f(x_k + \alpha d)$  is less steep at  $x_{k+1}$  compared to  $x_k$ .

If this less steep condition fails for small  $\alpha$ , it suggests that making  $\alpha$  larger can significantly decrease the objective.

## Strong Wolfe conditions



Image: Figure 3.5, Nocedal & Wright, Numerical Optimization

The strong Wolfe conditions strengthen the curvature condition to,

$$\left| d^T \nabla f(x_k + \alpha d) \right| \leq \tilde{c} \left| d^T \nabla f(x_k) \right|$$

which disallows large positive values of  $f'(x_k + \alpha d)$ .

Under mild assumptions on f and  $x_k$ , there is always some  $\alpha$  satisfying the strong/Wolfe conditions.

## Strong Wolfe conditions



Image: Figure 3.5, Nocedal & Wright, Numerical Optimization

The strong Wolfe conditions strengthen the curvature condition to,

$$\left| d^T \nabla f(x_k + \alpha d) \right| \leq \tilde{c} \left| d^T \nabla f(x_k) \right|$$

which disallows large positive values of  $f'(x_k + \alpha d)$ .

Under mild assumptions on f and  $x_k$ , there is always some  $\alpha$  satisfying the strong/Wolfe conditions.

A. Narayan (U. Utah - Math/SCI)

#### The Goldstein conditions

$$x_{k+1} = x_k + \alpha d.$$

Yet *another* set of conditions are the Goldstein conditions on  $\alpha$ :

$$f(x_k) + (1-c)\alpha d^T \nabla f(x_k) \leq f(x_k + \alpha d) \leq f(x_k) + c\alpha d^T \nabla f(x_k), \quad 0 < c < \frac{1}{2}.$$

Again, the goal is to mitigate small step sizes, but this can be too aggressive.



Image: Figure 3.6, Nocedal & Wright, Numerical Optimization

#### Convergence

The goal of descent algorithms is to compute a stationary point. (Asking for more without extra conditions is unreasonable.)

A method is *globally convergent* if we can guarantee:

$$\lim_{k \uparrow \infty} \|\nabla f(x_k)\|_2 = 0.$$

To discuss convergence we rely on a measure of how parallel our chosen descent direction  $d_k$  is to  $\nabla f(x_k)$  at each step:

$$\cos \theta_k \coloneqq \frac{-d_k^T \nabla f(x_k)}{\|d_k\| \|\nabla f(x_k)\|}.$$

One of the basic tools in convergence theory of descent methods is the Zoutendijk condition, stating that

$$\sum_{k=1}^{\infty} \cos^2 \theta_k \|\nabla f(x_k)\|^2 < \infty.$$
## Convergence

The goal of descent algorithms is to compute a stationary point. (Asking for more without extra conditions is unreasonable.)

A method is *globally convergent* if we can guarantee:

$$\lim_{k \uparrow \infty} \left\| \nabla f(x_k) \right\|_2 = 0.$$

To discuss convergence we rely on a measure of how parallel our chosen descent direction  $d_k$  is to  $\nabla f(x_k)$  at each step:

$$\cos \theta_k := \frac{-d_k^T \nabla f(x_k)}{\|d_k\| \|\nabla f(x_k)\|}.$$

One of the basic tools in convergence theory of descent methods is the Zoutendijk condition, stating that

$$\sum_{k=1}^{\infty} \cos^2 \theta_k \|\nabla f(x_k)\|^2 < \infty.$$

## Zoutendijk to convergence

$$\sum_{k=1}^{\infty} \cos^2 \theta_k \|\nabla f(x_k)\|^2 < \infty.$$

Why is this useful? We can convert this into global convergence if,

$$|\cos \theta_k| \ge \delta > 0, \qquad k \in \mathbb{N}$$

#### for some $\delta$ .

Then this implies:

$$\sum_{k=1}^{\infty} \|\nabla f(x_k)\|^2 < \infty \quad \Longrightarrow \quad \lim_{k \uparrow \infty} \|\nabla f(x_k)\| = 0,$$

i.e., global convergence.

## Zoutendijk to convergence

$$\sum_{k=1}^{\infty} \cos^2 \theta_k \|\nabla f(x_k)\|^2 < \infty.$$

Why is this useful? We can convert this into global convergence if,

$$|\cos \theta_k| \ge \delta > 0, \qquad k \in \mathbb{N}$$

for some  $\delta$ .

Then this implies:

$$\sum_{k=1}^{\infty} \|\nabla f(x_k)\|^2 < \infty \implies \lim_{k \uparrow \infty} \|\nabla f(x_k)\| = 0,$$

i.e., global convergence.

# Zoutendijk to convergence

$$\begin{split} & \mathcal{k}(A) = \underbrace{\sigma_{\max}(A)}{\sigma_{\min}(A)} \\ & |\cos \theta_k| \ge \delta > 0, \qquad k \in \mathbb{N} \end{split}$$
What kind of descent directions satisfy this?
$$- \text{ Steepest descent:} \\ & \cos \theta_k = \frac{\nabla f(x_k)^T \nabla f(x_k)}{\|\nabla f(x_k)\|^2} = 1. \\ - \text{ Newton's method: Assume } \nabla^2 f(x_k) > 0 \text{ for all } k, \text{ and that} \\ & \kappa(\nabla^2(f(x_k))) = \frac{\lambda_n(\nabla^2 f(x_k))}{\lambda_1(\nabla^2 f(x_k))} \le \kappa_0 < \infty, \quad \lim_{k \to \infty} k \in \mathbb{N}. \\ & \text{ Then} \\ & \cos \theta_k \ge \frac{1}{\kappa_0} > 0. \\ & \mathcal{M}_{\mathcal{Y}}, \quad d_k = -\left(\nabla^2 f(x_k)\right)^{-1} \nabla f(x_k) \longrightarrow -d_k^r \nabla f(x_k) = \nabla f(x_k)^T \left(\nabla^2 f\right)^{-r} \nabla f(x_k) \end{split}$$

## Global convergence of descent methods

We have established that the Zoutendijk condition ensures global convergence for certain choices of descent direction. Adherence to the Zoutendijk condition is determined by an appropriate choice of step size.

#### Theorem

Let f be bounded below and continuously differentiable with Lipschitz continuous gradient. Assume an iteration,

$$x_{k+1} = x_k + \alpha_k d_k.$$

where  $d_k$  is a descent direction and  $\alpha_k$ . If  $\alpha_k$  is chosen according to the Wolfe conditions, then  $(\theta_k, \nabla f(x_k))_{k \ge 1}$  satisfies the Zoutendijk condition.

This result also holds for the strong Wolfe conditions, and for the Goldstein conditions (with some extra technical assumptions).

A rather practical question of course is how quickly these methods converge. First, some terminology: A method has a pth order convergence rate if,

$$||x_{k+1} - x_*||_2 \leq r ||x_k - x_*||_2^p$$
,

for some constant r where  $x_*$  is the point the sequence converges to.

We have linear convergence for p = 1 and quadratic convergence for p = 2.

Note that, e.g., linear convergence is actually stronger in terms of the actual error since it implies,

$$\|x_k - x_*\|_2 \leqslant Cr^k = Ce^{k\log r},$$

for some constant C.

A rather practical question of course is how quickly these methods converge. First, some terminology: A method has a pth order convergence rate if,

$$||x_{k+1} - x_*||_2 \leq r ||x_k - x_*||_2^p$$
,

for some constant r where  $x_*$  is the point the sequence converges to.

We have linear convergence for p = 1 and quadratic convergence for p = 2.

Note that, e.g., linear convergence is actually stronger in terms of the actual error since it implies,

$$\|x_k - x_*\|_2 \leqslant Cr^k = Ce^{k\log r},$$

for some constant C.

## A simple example

Consider the quadratic function,

$$f(x) = \frac{1}{2}x^T A x - b^T x, \qquad A > 0,$$

The optimal solution is  $x_* = A^{-1}b$ .

Consider steepest descent with exact linesearch:

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k), \qquad \qquad \alpha_k = \frac{\nabla f(x_k)^T \nabla f(x_k)}{(\nabla f(x_k))^T A \nabla f(x_k)}.$$

#### Theorem

The error for the above descent algorithm is given by,

$$||x_{k+1} - x_*|| \le \left(\frac{\kappa(A) - 1}{\kappa(A) + 1}\right) ||x_k - x_*||$$

## A simple example

Consider the quadratic function,

$$f(x) = \frac{1}{2}x^T A x - b^T x, \qquad A > 0,$$

The optimal solution is  $x_* = A^{-1}b$ .

Consider steepest descent with exact linesearch:

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k), \qquad \qquad \alpha_k = \frac{\nabla f(x_k)^T \nabla f(x_k)}{(\nabla f(x_k))^T A \nabla f(x_k)}.$$

#### Theorem

Δ

The error for the above descent algorithm is given by,

$$\|x_{k+1} - x_*\| \leq \left(\frac{\kappa(A) - 1}{\kappa(A) + 1}\right) \|x_k - x_*\|$$

$$Same as \frac{\lambda_h(A) - \lambda_i(A)}{\lambda_h(A) + \lambda_i(A)} \longrightarrow Small (cliss fr o) when  $\lambda_i, \lambda_h$  or "simi) or" Locge (close fo 1) when  $\lambda_h - \lambda_h$  is lorge.  
Naravan (U. Utah - Math/SCI) Descent algorithms, I$$

## First-order convergence

The previous, simple example motivates the general result.

#### Theorem

Assume that f is continuously differentiable, and we use steepest descent with exact linesearch, which converges to  $x_*$ . If  $\nabla^2 f(x_*) > 0$ , then for large k we have,

$$f_{k+1} - f(x_*) \leq c^2 (f_k - f(x_*)),$$

where c is any number satisfying,

$$\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1} < c < 1,$$

with  $\lambda_j$  the ordered eigenvalues of  $\nabla^2 f(x_*)$ .

Note that generally, first-order convergence is slow.

## Newton's method convergence

Newton's method, being a local quadratic approximation, is second-order accurate.

#### Theorem

Assume  $\nabla^2 f$  is Lipschitz continuous, and that the initial point  $x_0$  is "close enough" to a local minimum  $x_*$ . Then:

$$\lim_{k \to \infty} x_k = x_*, \qquad ||x_{k+1} - x_k|| \le C ||x_k - x_*||^2.$$

Furthermore, the gradient norm quadratically converges to 0:

$$\left\|\nabla f(x_{k+1})\right\| \leqslant \widetilde{C} \left\|\nabla f(x_k)\right\|^2$$

The quadratic convergence guarantee of Newton's method is fantastic.

The problem is the nebulous condition on how close  $x_0$  must be to  $x_*$ .

## Qausi-Newton methods

 $\left(\begin{array}{c} I & o \\ o & I \end{array}\right) \quad \left(\begin{array}{c} I & o \\ o & o \end{array}\right)$ 

Quasi-Newton methods use a Newton-like update:

$$x_{k+1} = x_k + \alpha_k d_k,$$
  $d_k = -G_k^{-1} \nabla f(x_k),$  (2)

where  $G_k \approx \nabla^2 f(x_k)$ , and is easier to compute.

Note that since we only approximate the Hessian, quasi-Newton methods introduce a stepsize  $\alpha_k$ .

#### Theorem

Suppose that  $\nabla^2 f$  is continuously differentiable, and that we use the quasi-Newton update where  $\alpha_k$  is chosen to satisfy the Wolfe conditions<sup>1</sup> Assume that  $x_k \to x_*$  that is a stationary point with  $\nabla^2 f(x_*) > 0$ . If  $G_k \approx \nabla^2 f(x_*)$  in the following sense,

$$\lim_{k \to \infty} \frac{\left\| \left( G_k - \nabla^2 f(x_*) \right) d_k \right\|}{\|d_k\|} = 0,$$

then (i) there is some  $k_0 \in \mathbb{N}$  such that  $\alpha_k = 1$  is a Wolfe condition-admissible choice for  $k \ge k_0$ , and (ii) choosing  $\alpha_k = 1$  for all  $k \ge k_0$  results in  $x_k$  converging superlinearly to  $x_*$ .

<sup>1</sup>A special choice of the constants is also required.

A. Narayan (U. Utah - Math/SCI)

### Convergence rate summary

Our three main convergence guarantees are:

- Steepest Descent: linear convergence if linesearch conditions are met. Pretty cheap to implement.

- Newton's method: quadratic convergence if we start close enough to a local minimum. Relatively expensive - computing  $\nabla^2 f$  is not cheap.

quasi-Newton methods: superlinear convergence if a "good enough" Hessian approximation is chosen.

Cost on the order of steepest descent, typically requiring only gradients.

Many "canned" solvers use a convex combination of steepest descent and quasi-Newton methods:

- 1. Steepest descent is used initially to quickly reach a neighborhood of an optimum.
- 2. Quasi-/Newton methods then take over to bring iterates to the minimum quickly.

### Convergence rate summary

Our three main convergence guarantees are:

- Steepest Descent: linear convergence if linesearch conditions are met.
   Pretty cheap to implement.
- Newton's method: quadratic convergence if we start close enough to a local minimum. Relatively expensive - computing  $\nabla^2 f$  is not cheap.
- quasi-Newton methods: superlinear convergence if a "good enough" Hessian approximation is chosen.

Cost on the order of steepest descent, typically requiring only gradients.

Many "canned" solvers use a convex combination of steepest descent and quasi-Newton methods:

- 1. Steepest descent is used initially to quickly reach a neighborhood of an optimum.
- 2. Quasi-/Newton methods then take over to bring iterates to the minimum quickly.

## Basic quasi-Newton methods

Recall Newton's method:

$$x_{k+1} = x_k - (\nabla^2 f(x_k))^{-1} \nabla f(x_k).$$

Quasi-Newton methods (a) replace the Hessian with an approximation, and (b) introduce a stepsize to offset the potential mistake this makes

$$x_{k+1} = x_k - \alpha_k G_k^{-1} \nabla f(x_k)$$

Why? The main issue is that computing the Hessian is expensive.

One main idea is to form a *different* quadratic approximation than that dictated by Taylor series.

## Basic quasi-Newton methods

Recall Newton's method:

$$x_{k+1} = x_k - (\nabla^2 f(x_k))^{-1} \nabla f(x_k).$$

Quasi-Newton methods (a) replace the Hessian with an approximation, and (b) introduce a stepsize to offset the potential mistake this makes

$$x_{k+1} = x_k - \alpha_k G_k^{-1} \nabla f(x_k)$$

Why? The main issue is that computing the Hessian is expensive.

One main idea is to form a *different* quadratic approximation than that dictated by Taylor series.

## Local approximations

There are several quasi-Newton algorithms. The most popular ones (BFGS+DFP) use quadratic approximations:

Near  $x_k$ , the function f is approximated by,

$$m_k(d) = f(x_k) + d^T \nabla f(x_k) + \frac{1}{2} d^T G_k d,$$

#### where $G_k$ is updated at every k.

Assuming  $G_k > 0$ , the above approximation to f has an explicitly computable minimum:

$$d_k = -G_k^{-1} \nabla f(x_k),$$

which is used to perform the update,

$$x_{k+1} = x_k - \alpha_k d_k,$$

where  $\alpha_k$  is chosen to satisfy the Wolfe conditions.

## Local approximations

There are several quasi-Newton algorithms. The most popular ones (BFGS+DFP) use quadratic approximations:

Near  $x_k$ , the function f is approximated by,

$$m_k(d) = f(x_k) + d^T \nabla f(x_k) + \frac{1}{2} d^T G_k d,$$

where  $G_k$  is updated at every k.

Assuming  $G_k > 0$ , the above approximation to f has an explicitly computable minimum:

$$d_k = -G_k^{-1} \nabla f(x_k),$$

which is used to perform the update,

$$x_{k+1} = x_k - \alpha_k d_k,$$

where  $\alpha_k$  is chosen to satisfy the Wolfe conditions.

## Key observations

The key advances in quasi-Newton methods utilize the following:

- $G_{k+1}$  need not be entirely recomputed at every stage. Rather, it's chosen as a *low-rank* update to  $G_k$ .
- Inverses of low-rank augmented matrices are efficiently computable from original matrix inverses.

Theorem (Sherman-Morrison-Woodbury)  
Let 
$$A \in \mathbb{R}^{n \times n}$$
, and let  $uin\mathbb{R}^n$  be such that  $u^TAu \neq -1$ . Then,  
 $\left(A + uu^T\right)^{-1} = A^{-1} - \frac{(A^{-1}u)(A^{-1}u)^T}{1 + u^TA^{-1}u}.$ 

This property is one key result that makes quasi-Newton methods so effective – it makes them computationally efficient.

## Key observations

The key advances in quasi-Newton methods utilize the following:

- $G_{k+1}$  need not be entirely recomputed at every stage. Rather, it's chosen as a *low-rank* update to  $G_k$ .
- Inverses of low-rank augmented matrices are efficiently computable from original matrix inverses.

## Theorem (Sherman-Morrison-Woodbury)

Let 
$$A \in \mathbb{R}^{n \times n}$$
, and let  $uin \mathbb{R}^n$  be such that  $u^T A u \neq -1$ . Then,  
 $u \in \mathbb{R}^n$   
 $\left(A + uu^T\right)^{-1} = A^{-1} - \frac{(A^{-1}u)(A^{-1}u)^T}{1 + u^T A^{-1}u}$ .

This property is one key result that makes quasi-Newton methods so effective – it makes them computationally efficient.

## Updating $G_k$

How are these low-rank updates performed?

Assume we are at location  $x_{k+1}$ , with  $G_k \approx \nabla f^2(x_k)$  available from the previous step.

### Our goal is to construct some Hessian approximation $G_{k+1}$ .

Again, the main idea is that we form a local approximation around  $x_{k+1}$  for use in determining iterate k + 1:

$$m_{k+1}(s) = f(x_{k+1}) + s^T \nabla f(x_{k+1}) + \frac{1}{2} s^T G_{k+1} s,$$

where s represents the deviation from  $x_{k+1}$ .

We impose the following (reasonable) requirements:

- The gradient of  $m_{k+1}$  at  $x_{k+1}$  matches that of f:  $\nabla m_{k+1}(0) = \nabla f(x_{k+1})$  - this is already satisfied.

- The gradient of 
$$m_{k+1}$$
 at  $x_k$  matches that of  $f$ :  
 $\nabla m_{k+1}(x_k - x_{k+1}) = \nabla f(x_k)$ 

## Updating $G_k$

How are these low-rank updates performed?

Assume we are at location  $x_{k+1}$ , with  $G_k \approx \nabla f^2(x_k)$  available from the previous step.

Our goal is to construct some Hessian approximation  $G_{k+1}$ .

Again, the main idea is that we form a local approximation around  $x_{k+1}$  for use in determining iterate k + 1:

$$m_{k+1}(s) = f(x_{k+1}) + s^T \nabla f(x_{k+1}) + \frac{1}{2} s^T G_{k+1} s,$$

where s represents the deviation from  $x_{k+1}$ .

We impose the following (reasonable) requirements:

- The gradient of  $m_{k+1}$  at  $x_{k+1}$  matches that of f:  $\nabla m_{k+1}(0) = \nabla f(x_{k+1})$  - this is already satisfied.

- The gradient of 
$$m_{k+1}$$
 at  $x_k$  matches that of  $f$ :  
 $\nabla m_{k+1}(x_k - x_{k+1}) = \nabla f(x_k)$ 

 $( \leq 0 \notin \chi = \chi_{k+1} )$ 

### The secant equation

We seek to impose

$$\nabla m_{k+1}(x_k - x_{k+1}) = \nabla f(x_k).$$

Using  $x_{k+1} = x_k + \alpha_k d_k$ , this results in,

$$G_{k+1}(\alpha_k d_k) = \nabla f(x_{k+1}) - \nabla f(x_k).$$

Simplified notation for this is often used,

$$s_k \coloneqq x_{k+1} - x_k, \qquad \qquad y_k \coloneqq \nabla f(x_{k+1}) - \nabla f(x_k),$$

resulting in,

$$G_{k+1}s_k = y_k$$

This is called the secant equation.

## The secant equation

We seek to impose

$$\nabla m_{k+1}(x_k - x_{k+1}) = \nabla f(x_k).$$

Using  $x_{k+1} = x_k + \alpha_k d_k$ , this results in,

$$G_{k+1}(\alpha_k d_k) = \nabla f(x_{k+1}) - \nabla f(x_k).$$

Simplified notation for this is often used,

$$s_k \coloneqq x_{k+1} - x_k, \qquad \qquad y_k \coloneqq \nabla f(x_{k+1}) - \nabla f(x_k),$$

resulting in,

$$G_{k+1}s_k = y_k$$

This is called the secant equation.

## The curvature condition

The secant equation requires,

 $G_{k+1}s_k = y_k$   $S_k^{\tau} \qquad S_k^{\tau} \qquad S_k^{$ 

Recall that  $G_{k+1}$  should be positive-definite – this means we require

 $s_k^T y_k > 0$ 

### The above is the curvature condition.

If  $s_k$  and  $y_k$  are such that the curvature condition is satisfied, it is always possible to find a (symmetric, positive-definite) solution  $G_{k+1}$ .

How to satisfy the curvature condition?

Lemma

Choosing  $\alpha_k$  to satisfy the Wolfe conditions ensures that the curvature condition is satisfied.

## The curvature condition

The secant equation requires,

 $G_{k+1}s_k = y_k$ 

Recall that  $G_{k+1}$  should be positive-definite – this means we require

 $s_k^T y_k > 0$ 

The above is the curvature condition.

If  $s_k$  and  $y_k$  are such that the curvature condition is satisfied, it is always possible to find a (symmetric, positive-definite) solution  $G_{k+1}$ .

How to satisfy the curvature condition?

Lemma

Choosing  $\alpha_k$  to satisfy the Wolfe conditions ensures that the curvature condition is satisfied.

## The curvature condition

The secant equation requires,

 $G_{k+1}s_k = y_k$ 

Recall that  $G_{k+1}$  should be positive-definite – this means we require

$$s_k^T y_k > 0$$

The above is the curvature condition.

If  $s_k$  and  $y_k$  are such that the curvature condition is satisfied, it is always possible to find a (symmetric, positive-definite) solution  $G_{k+1}$ .

How to satisfy the curvature condition?

#### Lemma

Choosing  $\alpha_k$  to satisfy the Wolfe conditions ensures that the curvature condition is satisfied.

## Computing $G_{k+1}$

$$G_{k+1}s_k = y_k$$

Under the curvature conditions, we can find a solution  $G_{k+1}$ . How to find a unique one?

Let's find the solution "closest" to the previous iterate  $G_k$ :

$$G_{k+1} = \underset{G=G^T}{\operatorname{arg\,min}} \|G - G_k\| \text{ subject to } Gs_k = y_k$$

The choice of norm is, of course, up for grabs.

A convenient norm that makes the solution explicit is the weighted Frobenius norm,

$$\|A\|_{W,F} := \|\sqrt{W}A\sqrt{W}\|_F, \qquad \qquad W = \int_0^1 \nabla^2 f(x_k + \beta \alpha_k d_k) \mathrm{d}\beta,$$

i.e., W is an averaged Hessian.

## Computing $G_{k+1}$

$$G_{k+1}s_k = y_k$$

Under the curvature conditions, we can find a solution  $G_{k+1}$ . How to find a unique one?

Let's find the solution "closest" to the previous iterate  $G_k$ :

$$G_{k+1} = \underset{G=G^T}{\operatorname{arg\,min}} \|G - G_k\| \text{ subject to } Gs_k = y_k$$

The choice of norm is, of course, up for grabs.

A convenient norm that makes the solution explicit is the weighted Frobenius norm,

$$|A||_{W,F} \coloneqq \|\sqrt{W}A\sqrt{W}\|_F, \qquad \qquad W = \int_0^1 \nabla^2 f(x_k + \beta \alpha_k d_k) \mathrm{d}\beta,$$

i.e., W is an averaged Hessian.

## Computing $G_{k+1}$

$$G_{k+1}s_k = y_k$$

Under the curvature conditions, we can find a solution  $G_{k+1}$ . How to find a unique one?

Let's find the solution "closest" to the previous iterate  $G_k$ :

$$G_{k+1} = \underset{G=G^T}{\operatorname{arg\,min}} \|G - G_k\| \text{ subject to } Gs_k = y_k$$

The choice of norm is, of course, up for grabs.

A convenient norm that makes the solution explicit is the weighted Frobenius norm,

$$|A||_{W,F} \coloneqq ||\sqrt{W}A\sqrt{W}||_F, \qquad \qquad W = \int_0^1 \nabla^2 f(x_k + \beta \alpha_k d_k) \mathrm{d}\beta,$$

i.e., W is an averaged Hessian.

## The Davidon-Fletcher-Powell method

The solution in this weighted norm is actually explicit:

$$G_{k+1} = (I - \rho_k y_k s_k^T) G_k (I - \rho_k s_k y_k^T) + \rho_k y_k y_k^T$$
  
=  $G_k - \rho_k (y_k s_k^T G_k + G_k s_k y_k^T) + \rho_k y_k y_k^T$ ,

where  $\rho_k = 1/(y_k^T s_k)$ .

This choice of  $G_{k+1}$  (along with choosing  $\alpha_{k+1}$  via the Wolfe conditions) is the Davidon-Fletcher-Powell (DFP) method.

For numerical efficiency, instead of updating  $G_k$ , its inverse  $H_k := G_k^{-1}$  is updated.

The above is a rank-two update of  $G_k$ , implying via SMW that its inverse is also computable via a rank-two update:

$$H_{k+1} = H_k - \frac{H_k y_k y_k^T H_k}{y_k^T H_k y_k} + \rho_k s_k s_k^T.$$

This shows the strength of quasi-Newton methods: only  $s_k$  and  $y_k$  are needed (gradients), and approximations to the Hessian  $H_{k+1}$  are quickly computable.

## The Davidon-Fletcher-Powell method

The solution in this weighted norm is actually explicit:

$$G_{k+1} = (I - \rho_k y_k s_k^T) G_k (I - \rho_k s_k y_k^T) + \rho_k y_k y_k^T$$
  
=  $G_k - \rho_k (y_k s_k^T G_k + G_k s_k y_k^T) + \rho_k y_k y_k^T$ ,

where  $\rho_k = 1/(y_k^T s_k)$ .

This choice of  $G_{k+1}$  (along with choosing  $\alpha_{k+1}$  via the Wolfe conditions) is the Davidon-Fletcher-Powell (DFP) method.

For numerical efficiency, instead of updating  $G_k$ , its inverse  $H_k := G_k^{-1}$  is updated.

The above is a rank-two update of  $G_k$ , implying via SMW that its inverse is also computable via a rank-two update:

$$H_{k+1} = H_k - \frac{H_k y_k y_k^T H_k}{y_k^T H_k y_k} + \rho_k s_k s_k^T.$$

This shows the strength of quasi-Newton methods: only  $s_k$  and  $y_k$  are needed (gradients), and approximations to the Hessian  $H_{k+1}$  are quickly computable.

## Closely related to DFP: BFGS

An approach *dual* to DFP is BFGS. Recall the secant equation:

$$G_{k+1}s_k = y_k$$

Writing  $H_k := G_k^{-1}$ , this is the same as

$$H_{k+1}y_k = s_k.$$

Instead of optimizing for the closest G to  $G_k$  (as DFP does), we could optimize for the closest H to  $H_k$ :

$$G_{k+1} = \underset{H=H^T}{\arg\min} \|H - H_k\| \text{ subject to } Hy_k = s_k$$

Unsurprisingly, the solution is formulaically very similar to DFP:

$$H_{k+1} = (I - \rho_k s_k y_k^T) H_k (I - \rho_k y_k s_k^T) + \rho s_k s_k^T$$
$$= H_k - \rho_k (s_k y_k^T H_k + H_k y_k s_k^T) + \rho_k s_k s_k^T.$$

The update above for H constitutes the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.

## Closely related to DFP: BFGS

An approach *dual* to DFP is BFGS. Recall the secant equation:

$$G_{k+1}s_k = y_k$$

Writing  $H_k := G_k^{-1}$ , this is the same as

$$H_{k+1}y_k = s_k.$$

Instead of optimizing for the closest G to  $G_k$  (as DFP does), we could optimize for the closest H to  $H_k$ :

$$G_{k+1} = \underset{H=H^T}{\arg\min} \|H - H_k\| \text{ subject to } Hy_k = s_k$$

Unsurprisingly, the solution is formulaically very similar to DFP:

$$H_{k+1} = (I - \rho_k s_k y_k^T) H_k (I - \rho_k y_k s_k^T) + \rho s_k s_k^T$$
$$= H_k - \rho_k (s_k y_k^T H_k + H_k y_k s_k^T) + \rho_k s_k s_k^T.$$

The update above for H constitutes the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.

## Quasi-Newton methods

DFP and BFGS are the most popular quasi-Newton methods.

- BFGS is typically considered "better" as it has better empirical self-correction properties (which have some theoretical underpinning)
- The initial Hessian  $H_0$  needs to be chosen. Typically it's initialized as the exact Hessian (which requires only 1 full Hessian computation), based on some problem-specific knowledge, or is chosen as the identity.
- BFGS (with the Wolfe conditions on stepsize) is essentially the modern gold standard quasi-Newton method.

| steepest  | BFGS     | Newton   |
|-----------|----------|----------|
| descent   |          |          |
| 1.827e-04 | 1.70e-03 | 3.48e-02 |
| 1.826e-04 | 1.17e-03 | 1.44e-02 |
| 1.824e-04 | 1.34e-04 | 1.82e-04 |
| 1.823e-04 | 1.01e-06 | 1.17e-08 |

#### Nocedal & Wright, Numerical Optimization

Steepest descent is slow to converge (5264 iterations), but fast to compute.

Newton's method is fast to converge (21 iterations), but slow to compute.

Quasi-Newton methods are typically fast to converge (34 iterations) and fast to compute.

A. Narayan (U. Utah - Math/SCI)

## Moving on from linesearch

Linesearch methods were our starting point:

$$x_{k+1} = x_k + \alpha_k d_k.$$

We choose  $d_k$  (steepest descent, quasi-/Newton), and subsequently try to choose the "best"  $\alpha_k$ .

An alternative collection of strategies are trust region methods.

Loosely speaking, trust region methods

- choose a value for  $\alpha_k$  (rather, a region of "trust" in a local approximation to f)
- choose a descent direction that is best inside this region
- iterates the procedure, making the trust region smaller if adequate objective decrease is not observed
The basic anatomy of one iteration of a trust region method is as follows:

- "Construct" a model  $m_k(\cdot)$  to  $f(\cdot)$ . This construction can use information from the current iteration (e.g., gradients) along with history.
- Decide on a trust region radius  $\Delta_k > 0$  where  $m_k$  is deemed sufficiently accurate
- Solve the optimization problem:

$$x_{k+1} - x_k = \operatorname*{arg\,min}_k m_k(d) \quad \mathrm{subject to} \quad \|d\| \leq \Delta_k,$$

where any norm  $\|\cdot\|$  can be chosen. ( $\|\cdot\| = \|\cdot\|_2$  is the most common choice.) Trust region methods therefore solve subproblems at each step.

#### How to choose trust region radii?

The trust region radius  $\Delta_k$  is typically chosen heuristically, based on a computable indicator:

$$d_k = x_{k+1} - x_k$$
  $p_k = \frac{f(x_k) - f(x_{k+1})}{m_k(0) - m_k(d_k)}$ 

The basic idea (without details): Given some initial value of  $\Delta_k$ ,

- 1. Solve the trust region subproblem for  $d_k$
- 2. Compute  $\rho_k$  above
- 3. If  $\rho_k$  is "big enough"

• If 
$$||d_k|| = \Delta_k$$
, make  $\Delta_{k+1}$  larger than  $\Delta_k$ 

• If 
$$\|d_k\| < \Delta_k$$
, set  $\Delta_{k+1} = \Delta_k$ 

- 4. If  $\rho_k$  is "too small":
  - Make  $\Delta_{k+1}$  smaller than  $\Delta_k$
  - Set  $d_k = 0$  and  $x_{k+1} = x_k$  (i.e., rewind the k + 1 step)

#### How to choose trust region radii?

The trust region radius  $\Delta_k$  is typically chosen heuristically, based on a computable indicator:

$$d_k = x_{k+1} - x_k \mathscr{F} = \frac{f(x_k) - f(x_{k+1})}{m_k(0) - m_k(d_k)}.$$

The basic idea (without details): Given some initial value of  $\Delta_k$ ,

- 1. Solve the trust region subproblem for  $d_k$
- 2. Compute  $\rho_k$  above 3. If  $\rho_k$  is "big enough" (this good) If  $||d_k|| = \Delta_k$ , make  $\Delta_{k+1}$  larger than  $\Delta_k$

• If 
$$\|d_k\| < \Delta_k$$
, set  $\Delta_{k+1} = \Delta_k$ 

- 4. If  $\rho_k$  is "too small": (this is had)
  - Make  $\Delta_{k+1}$  smaller than  $\Delta_k$
  - Set  $d_k = 0$  and  $x_{k+1} = x_k$  (i.e., rewind the k+1 step)

#### A simple specialization

The most common model  $m_k$  is a quadratic model based on a Taylor expansion:

$$m_k(d) = f(x_k) + d^T \nabla f(x_k) + \frac{1}{2} d^T G_k d,$$

where  $G_k \approx \nabla^2 f(x_k)$  is typically sought.

If we use the Euclidean norm for the trust region optimization subproblem, we are solving:

$$x_{k+1} - x_k = \operatorname*{arg\,min}_d f(x_k) + d^T \nabla f(x_k) + \frac{1}{2} d^T G_k d \quad \text{subject to} \quad \|d\| \leq \Delta_k.$$

Note: if  $G_k > 0$ , and  $||G_k^{-1}\nabla f(x_k)|| \leq \Delta_k$ , then the solution to the above problem is exactly,

$$x_{k+1} = x_k - G_k^{-1} \nabla f(x_k)$$

Most of the time, we do not achieve this unconstrained minimum, and instead must actually solve a constrained optimization problem.

The silver lining is that in practice only an approximate solution is required.

### A simple specialization

The most common model  $m_k$  is a quadratic model based on a Taylor expansion:

$$m_k(d) = f(x_k) + d^T \nabla f(x_k) + \frac{1}{2} d^T G_k d,$$

where  $G_k \approx \nabla^2 f(x_k)$  is typically sought.

If we use the Euclidean norm for the trust region optimization subproblem, we are solving:

$$x_{k+1} - x_k = \underset{d}{\operatorname{arg\,min}} f(x_k) + d^T \nabla f(x_k) + \frac{1}{2} d^T G_k d \quad \text{subject to} \quad \|d\| \leq \Delta_k.$$

Note: if  $G_k > 0$ , and  $||G_k^{-1} \nabla f(x_k)|| \leq \Delta_k$ , then the solution to the above problem is exactly,

$$x_{k+1} = x_k - G_k^{-1} \nabla f(x_k)$$

Most of the time, we do not achieve this unconstrained minimum, and instead must actually solve a constrained optimization problem.

The silver lining is that in practice only an approximate solution is required.

Descent algorithms, I

A. Narayan (U. Utah - Math/SCI)

If we choose a quadratic model,

$$m_k(d) = f(x_k) + d^T \nabla f(x_k) + \frac{1}{2} d^T G_k d,$$

how are the  $G_k$  approximations chosen?

Exact Hessians: Newton Trust Region methods. Approximate Hessians: quasi-Newton Trust Region methods.

It's important to note that Newton Trust Region methods are <u>not</u> the same as Newton's method with a stepsize restriction!

### Solutions to the subproblem

We seek to compute solutions to

$$x_{k+1} - x_k = \operatorname*{arg\,min}_d f(x_k) + d^T \nabla f(x_k) + \frac{1}{2} d^T G_k d \quad \text{subject to} \quad \|d\| \leq \Delta_k.$$

Note that this is a (fairly simple) constrained optimization problem – there are KKT conditions for its solution.

However, directly solving these is not really straightforward or cheap, so approximate methods are used.

We'll look at two of the simplest approaches:

- The Cauchy point method
- The dogleg method

The Cauchy point, I



$$x_{k+1} - x_k = \underset{d}{\operatorname{arg\,min}} m_k(d) \quad \text{subject to} \quad \|d\| \leq \Delta_k$$
$$m_k(d) = f(x_k) + d^T \nabla f(x_k) + \frac{1}{2} d^T G_k d$$

The simplest Cauchy point method is straightforward:

- Linearize  $m_k (m_k \approx f(x_k) + d^T \nabla f(x_k))$
- Choose  $d_k$  to minimize the linearized  $m_k$  within the trust region. Set  $d_k \leftarrow d_k / \|d_k\|$ .
- Minimize  $m_k(\beta d_k)$  for  $\beta \leq \Delta_k$  (linesearch)

Finding the unit norm d that minimizes the linearized  $m_k$  within the trust region is easy:

$$d_k = -\frac{\nabla f(x_k)}{\|\nabla f(x_k)\|}$$

Since  $m_k(\beta d_k)$  is now a quadratic function in one variable with an interval constraint on  $\beta$ , it is also easily minimized.

### The Cauchy point, I

$$x_{k+1} - x_k = \underset{d}{\operatorname{arg\,min}} m_k(d) \quad \text{subject to} \quad \|d\| \leq \Delta_k.$$
$$m_k(d) = f(x_k) + d^T \nabla f(x_k) + \frac{1}{2} d^T G_k d$$

The simplest Cauchy point method is straightforward:

- Linearize  $m_k (m_k \approx f(x_k) + d^T \nabla f(x_k))$
- Choose  $d_k$  to minimize the linearized  $m_k$  within the trust region. Set  $d_k \leftarrow d_k / \|d_k\|$ .
- Minimize  $m_k(\beta d_k)$  for  $\beta \leq \Delta_k$  (linesearch)

Finding the unit norm d that minimizes the linearized  $m_k$  within the trust region is easy:

$$d_k = -\frac{\nabla f(x_k)}{\|\nabla f(x_k)\|}$$

Since  $m_k(\beta d_k)$  is now a quadratic function in one variable with an interval constraint on  $\beta$ , it is also easily minimized.

# The Cauchy point, II

$$d_k = -\frac{\nabla f(x_k)}{\|\nabla f(x_k)\|}$$
  
$$\beta_k = \operatorname*{arg\,min}_{\beta \in [0, \Delta_k]} m_k(\beta d_k).$$

The solution is:

$$\beta_k = \begin{cases} \Delta_k & \nabla f(x_k)^T G_k \nabla f(x_k) \leqslant 0.\\ \min\left\{\frac{\|\nabla f(x_k)^T G_k \nabla f(x_k)}{\nabla f(x_k)^T G_k \nabla f(x_k)}, \Delta_k\right\}, & \text{otherwise} \end{cases}$$

The final update is

$$x_{k+1} = x_k + \beta_k d_k.$$

The Cauchy point isn't very sophisticated: dependence on the Hessian is weak, playing a role only in the stepsize choice, and not in the descent direction.

# The Cauchy point, II

$$d_k = -\frac{\nabla f(x_k)}{\|\nabla f(x_k)\|}$$
  
$$\beta_k = \operatorname*{arg\,min}_{\beta \in [0, \Delta_k]} m_k(\beta d_k).$$

The solution is:

$$\beta_k = \begin{cases} \Delta_k & \nabla f(x_k)^T G_k \nabla f(x_k) \leqslant 0.\\ \min\left\{\frac{\|\nabla f(x_k)^T G_k \nabla f(x_k)}{\nabla f(x_k)^T G_k \nabla f(x_k)}, \Delta_k\right\}, & \text{otherwise} \end{cases}$$

The final update is

$$x_{k+1} = x_k + \beta_k d_k.$$

The Cauchy point isn't very sophisticated: dependence on the Hessian is weak, playing a role only in the stepsize choice, and not in the descent direction.

The dogleg method, I

$$x_{k+1} - x_k = \underset{d}{\operatorname{arg\,min}} m_k(d) \quad \text{subject to} \quad \|d\| \leq \Delta_k.$$
$$m_k(d) = f(x_k) + d^T \nabla f(x_k) + \frac{1}{2} d^T G_k d$$

The dogleg method improves on the Cauchy point. We assume  $G_k > 0$ . Here is the idea:

If the global minimizer of  $m_k$  is within the trust region, we're done, so assume otherwise.

For infinitesimal  $\Delta_k$ ,  $m_k$  is approximately linear, so as a function of  $\Delta \ll 1$ , we have

$$-\Delta \frac{\nabla f(x_k)}{\|\nabla f(x_k)\|} \approx \arg\min_d m_k(d),$$

which again just asserts that steepest descent is optimal for small  $\Delta.$ 

Along this direction, we can compute the exact unconstrained minimum of  $m_k$ :

$$\underset{\beta \nabla f(x_k)}{\operatorname{arg\,min}} m_k(\beta \nabla f(x_k)) = -\frac{\|\nabla f(x_k)\|^2}{(\nabla f(x_k))^T G_k \nabla f(x_k)} \nabla f(x_k).$$

min m (1)

The dogleg method, I

$$x_{k+1} - x_k = \underset{d}{\operatorname{arg\,min}} m_k(d) \quad \text{subject to} \quad \|d\| \leq \Delta_k$$
$$m_k(d) = f(x_k) + d^T \nabla f(x_k) + \frac{1}{2} d^T G_k d$$

The dogleg method improves on the Cauchy point. We assume  $G_k > 0$ . Here is the idea:

If the global minimizer of  $m_k$  is within the trust region, we're done, so assume otherwise.

For infinitesimal  $\Delta_k$ ,  $m_k$  is approximately linear, so as a function of  $\Delta_k \ll 1$ , we have  $\int \frac{\nabla f(x_k)}{||\nabla f(x_k)||} \approx \arg\min_d m_k(d),$ 

which again just asserts that steepest descent is optimal for small  $\Delta_{\mathbf{k}}$ 

Along this direction, we can compute the exact unconstrained minimum of  $m_k$ :

$$\underset{\beta \nabla f(x_k)}{\operatorname{arg\,min}} m_k(\beta \nabla f(x_k)) = -\frac{\|\nabla f(x_k)\|^2}{(\nabla f(x_k))^T G_k \nabla f(x_k)} \nabla f(x_k).$$

Descent algorithms, I

The dogleg method, II

The dogleg method considers the following piecewise secant trajectory paramaterized by  $\tau \in [0, 2]$ :

-  $\tau \in [0,1]$ : The line segment from the origin to the unconstrained minimum of  $m_k$  along  $-\nabla f(x_k)$ :

$$d(\tau) = -\tau \frac{\|\nabla f(x_k)\|^2}{(\nabla f(x_k))^T G_k \nabla f(x_k)} \nabla f(x_k), \qquad 0 \le \tau \le 1.$$

 $\tau \in [0,2]$ : The line segment from d(1) to the unconstrained minimum of  $m_k$ :

$$d(\tau) = d(1) + (\tau - 1)(-G_k^{-1}\nabla f(x_k) - d(1)), \qquad 1 < \tau \le 2.$$

The method itself computes the minimum of  $m_k$  within the trust region along this secant trajectory:

$$\min_{\substack{\mathsf{M}_k \mid \mathbf{f}_k \mid \mathbf{f}_k \\ \mathsf{M}_k \mid \mathbf{f}_k \in [0,2], \|d(\tau)\| \leq \Delta_k \\ \tau \in [0,2], \|d(\tau)\| \leq \Delta_k }} m_k(d(\tau)), \qquad x_{k+1} = x_k + d(\tau_k).$$

A. Narayan (U. Utah - Math/SCI)

The dogleg method, II

The dogleg method considers the following piecewise secant trajectory paramaterized by  $\tau \in [0, 2]$ :

-  $\tau \in [0,1]$ : The line segment from the origin to the unconstrained minimum of  $m_k$  along  $-\nabla f(x_k)$ :

$$d(\tau) = -\tau \frac{\|\nabla f(x_k)\|^2}{(\nabla f(x_k))^T G_k \nabla f(x_k)} \nabla f(x_k), \qquad 0 \le \tau \le 1.$$

-  $\tau \in [0, 2]$ : The line segment from d(1) to the unconstrained minimum of  $m_k$ :

$$d(\tau) = d(1) + (\tau - 1)(-G_k^{-1}\nabla f(x_k) - d(1)), \qquad 1 < \tau \le 2.$$

The method itself computes the minimum of  $m_k$  within the trust region along this secant trajectory:

$$\tau_k = \arg\min_{\tau \in [0,2], \, \|d(\tau)\| \le \Delta_k} m_k(d(\tau)), \qquad x_{k+1} = x_k + d(\tau_k).$$

# The dogleg method, II



Image: Figure 4.4, Nocedal & Wright, Numerical Optimization

One can show that  $m_k$  is decreasing along the dogleg path as  $\tau$  increases. Thus, one needs only to pick  $\tau$  as large as possible without leaving the trust region, which can be done explicitly.

# References I

- Larry Armijo, *Minimization of functions having Lipschitz continuous first partial derivatives*, Pacific Journal of Mathematics **16** (1966), no. 1, 1–3.
- Amir Beck, *Introduction to Nonlinear Optimization*, MOS-SIAM Series on Optimization, Society for Industrial and Applied Mathematics, October 2014.
- \_\_\_\_\_, First-Order Methods in Optimization, MOS-SIAM Series on Optimization, Society for Industrial and Applied Mathematics, October 2017.
- W. C. Davidon, VARIABLE METRIC METHOD FOR MINIMIZATION, Tech. Report ANL-5990, Argonne National Lab., Lemont, III., 1959.
- William C. Davidon, Variable Metric Method for Minimization, SIAM Journal on Optimization 1 (1991), no. 1, 1–17, Publisher: Society for Industrial and Applied Mathematics.
- J. E. Dennis and Robert B. Schnabel, *Numerical Methods for Unconstrained Optimization and Nonlinear Equations*, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics, 1996.
- Jr. Dennis, J. E. and Jorge J. Moré, *Quasi-Newton Methods, Motivation and Theory*, SIAM Review **19** (1977), no. 1, 46–89.

### References II

- R. Fletcher, Practical Methods of Optimization, Wiley, 1987, Google-Books-ID: W0zvAAAAMAAJ.
- Jorge Nocedal, *Theory of algorithms for unconstrained optimization*, Acta Numerica **1** (1992), 199–242.
- Jorge Nocedal and S. Wright, *Numerical Optimization*, 2 ed., Springer Series in Operations Research and Financial Engineering, Springer-Verlag, New York, 2006.
- J. M. Ortega and W. C. Rheinboldt, *Iterative Solution of Nonlinear Equations in Several Variables*, Classics in Applied Mathematics, 2000.
- Philip Wolfe, Convergence Conditions for Ascent Methods, SIAM Review 11 (1969), no. 2, 226–235.
- Image: Convergence Conditions for Ascent Methods. II: Some Corrections, SIAM Review 13 (1971), no. 2, 185–188.