
Math 6880/7875: Advanced Optimization
Descent algorithms, Part I

Akil Narayan1

1Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute
University of Utah

Feburary 8, 2022

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Descent algorithms

A foundational computational algorithmic idea for unconstrained + smooth
optimization is a descent method.

Many optimization tools are variants of descent methods. We’ll tour such methods.
– The basic descent method
– First- and second-order methods
– Convergence guarantees
– quasi-Newton methods
– Trust region methods

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The descent method

Consider the unconstrained optimization,

min
xP n

fpxq

When we cannot solve this analytically, algorithms are our recourse.

Most optimization algorithms are iterative, meaning that an initial guess is
repeatedly improved.

The most common method for performing the “improvement” is to geometrically
travel in a descent direction.

Definition
Given a continuous function f and a point x0 P n, a vector d P n is a descent
direction for f at x0 if, there exists some ✏ “ ✏pf, x0, dq ° 0 such that,

fpx0 ` �dq † fpx0q, @ 0 † � § ✏.

If x0 is a local minimum, there are no descent directions.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The descent method

Consider the unconstrained optimization,

min
xP n

fpxq

When we cannot solve this analytically, algorithms are our recourse.

Most optimization algorithms are iterative, meaning that an initial guess is
repeatedly improved.

The most common method for performing the “improvement” is to geometrically
travel in a descent direction.

Definition
Given a continuous function f and a point x0 P n, a vector d P n is a descent
direction for f at x0 if, there exists some ✏ “ ✏pf, x0, dq ° 0 such that,

fpx0 ` �dq † fpx0q, @ 0 † � § ✏.

If x0 is a local minimum, there are no descent directions.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Some pseudocode

The anatomy of essentially every descent method is as follows:
1. Begin with an initial guess x0, set k “ 0

2. Identify a descent direction dk at xk

3. Identify a stepsize ↵k ° 0

4. Define xk`1 “ xk ` ↵kdk

5. If xk`1 is good enough, stop. Otherwise set k – k ` 1, return to step 2.
Things in blue are crucial decisions/inputs to the algorithm:

– An initial guess x0

– A strategy for computing a descent direction dk

– A strategy for computing a stepsize ↵k

– A way to determine when an iterate has converged, terminating the algorithm

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Some pseudocode

The anatomy of essentially every descent method is as follows:
1. Begin with an initial guess x0, set k “ 0

2. Identify a descent direction dk at xk

3. Identify a stepsize ↵k ° 0

4. Define xk`1 “ xk ` ↵kdk

5. If xk`1 is good enough, stop. Otherwise set k – k ` 1, return to step 2.
Things in blue are crucial decisions/inputs to the algorithm:

– An initial guess x0

– A strategy for computing a descent direction dk

– A strategy for computing a stepsize ↵k

– A way to determine when an iterate has converged, terminating the algorithm

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Initial guess and termination

Strategies for initial guess and termination criteria are in some sense the easiest to
describe.

Common termination strategies:
– }xk ´ xk´1} † ✏ (Does this imply xk is close to optimal?)
– |fpxkq ´ fpxk´1q| † ✏ (Does this imply fpxkq is close to optimal?)
– }rfpxkq} † ✏ (Does this imply xk is close to stationary?)
– Combinations of the above

Frequently there is not a clear “good” choice.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Initial guess and termination

Strategies for initial guess and termination criteria are in some sense the easiest to
describe.

Common initialization strategies:
– Start “close” to a local or global minimum
– Repitition: choose several initializations, optimize for all of them
– Randomization: randomly choose x0

– Homotopy: Let fm, m ° 0 be some sequence of functions such that fm Ñ f

in an appropriate sense.
Choose x0, optimize f1 resulting in optimum rx1.
Set x0 “ rx1, optimize f2 resulting in optimum rx2.
...
This is sensible if fm for small m is easier to optimize than f .

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Initial guess and termination

Strategies for initial guess and termination criteria are in some sense the easiest to
describe.

Deciding on a descent direction and stepsize are typically the meat of developing
good optimization algorithms.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The “classical” stuff

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Descent directions

xk`1 “ xk ` ↵kdk.

We assume dk is a descent direction, and for smooth f this is the same as,

d
T

k rfpxkq † 0.

Nearly all descent algorithms use an update direction given by,

dk “ ´G
´1
k

rfpxkq,

where Gk is some symmetric, positive-definite matrix.
(Note this condition on Gk guarantees dk is a diescent direction.)
For example:

– Steepest/Gradient descent: Gk “ I

– Newton’s method: Gk “ r2
fpxkq

– quasi-Newton methods: Gk « r2
fpxkq

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Descent directions

xk`1 “ xk ` ↵kdk.

We assume dk is a descent direction, and for smooth f this is the same as,

d
T

k rfpxkq † 0.

Nearly all descent algorithms use an update direction given by,

dk “ ´G
´1
k

rfpxkq,

where Gk is some symmetric, positive-definite matrix.
(Note this condition on Gk guarantees dk is a diescent direction.)
For example:

– Steepest/Gradient descent: Gk “ I

– Newton’s method: Gk “ r2
fpxkq

– quasi-Newton methods: Gk « r2
fpxkq

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Steepest/gradient descent

xk`1 “ xk ` ↵kdk.

The direction dk is chosen to infinitesimally decrease f the fastest:

dk “ ´rfpxkq.

Note that steepest descent need not be a good idea.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Steepest/gradient descent

xk`1 “ xk ` ↵kdk.

The direction dk is chosen to infinitesimally decrease f the fastest:

dk “ ´rfpxkq.

Note that steepest descent need not be a good idea.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Steepest descent is first-order

xk`1 “ xk ´ ↵krfpxkq

Steepest descent can be understood as a first-order Taylor expansion. First
approximate:

fpxq « fpxkq ` px ´ xkqTrfpxkq,

and choose x so that px ´ xkqTrfpxkq is minimized for fixed }x ´ xk}:

dk “ x ´ xk “ ´rfpxkq

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Scaling

One reason why steepest descent tends to produce poor iterates is because
problems can be poorly scaled.

Consider

fpxq “ x
T

ˆ
10 0
0 1

˙
x.

The global minimum is x “ 0, but starting at x “ p0.5, 1q produces pretty bad
descent directions.

Steepest descent is not scale invariant.

A simple strategy to mitigate poor scaling is diagonal scaling:

min fpxq ›Ñ min gpxq,

where gpxq “ fpDxq, with D a positive-definite diagonal matrix.

The hard part is computing D (which can change at every iteration).

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Scaling

One reason why steepest descent tends to produce poor iterates is because
problems can be poorly scaled.

Consider

fpxq “ x
T

ˆ
10 0
0 1

˙
x.

The global minimum is x “ 0, but starting at x “ p0.5, 1q produces pretty bad
descent directions.

Steepest descent is not scale invariant.

A simple strategy to mitigate poor scaling is diagonal scaling:

min fpxq ›Ñ min gpxq,

where gpxq “ fpDxq, with D a positive-definite diagonal matrix.

The hard part is computing D (which can change at every iteration).

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Newton’s method

There are two equivalent ways to derive Newton’s method.

For simplicity, we’ll assume r2
fpxkq ° 0.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Newton’s method

There are two equivalent ways to derive Newton’s method.

For simplicity, we’ll assume r2
fpxkq ° 0.

The first derivation: approximate f with a second-order Taylor expansion and
minimize:

fpxq « fpxkq ` drfpxkq ` 1
2
d
Tr2

fpxkqd, d “ x ´ xk.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Newton’s method

There are two equivalent ways to derive Newton’s method.

For simplicity, we’ll assume r2
fpxkq ° 0.

The first derivation: approximate f with a second-order Taylor expansion and
minimize:

fpxq « fpxkq ` drfpxkq ` 1
2
d
Tr2

fpxkqd, d “ x ´ xk.

The right-hand side is a strictly convex function of d, so can be exactly minimized:

d “ ´ `
r2

fpxkq˘´1 rfpxkq.

Note that this relies on positive-definiteness of the Hessian, suggesting that this is
only a good idea if f is locally convex around xk....

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Newton’s method

There are two equivalent ways to derive Newton’s method.

For simplicity, we’ll assume r2
fpxkq ° 0.

The second derivation: Let’s use Newton’s method for nonlinear root-finding to
compute stationary points.

Define,

gpxq :“ rfpxq ›Ñ Solve for x : gpxq “ 0

Note that g : n Ñ n.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Newton’s method

There are two equivalent ways to derive Newton’s method.

For simplicity, we’ll assume r2
fpxkq ° 0.

The second derivation: Let’s use Newton’s method for nonlinear root-finding to
compute stationary points.

Define,

gpxq :“ rfpxq ›Ñ Solve for x : gpxq “ 0

Note that g : n Ñ n.

Given a current iterate xk, Newton’s method for rootfinding for g:

xk`1 “ xk ´ prgpxkqq´1
gpxkq.

The quantity rg is a Jacobian matrix, with entries,

rgpxq “
ˆ B

Bx1
rfpxq B

Bx2
rfpxq ¨ ¨ ¨ B

Bxn

rfpxq
˙

“ r2
fpxq,

so that we have

xk`1 “ xk ´ `
r2

fpxkq˘´1 rfpxkq ùñ xk`1 ´ xk “ ´ `
r2

fpxkq˘´1 rfpxkq.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Newton’s method and scaling

Note that Newton’s method exactly minimizes positive-definite quadratic functions
in a single step.

In particular, even poorly scaled quadratic functions are exactly minimized.

For this reason, Newton-type methods are called scale invariant.

Naturally there is a price to pay: computing r2
f is much more expensive than rf .

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Newton’s method and scaling

Note that Newton’s method exactly minimizes positive-definite quadratic functions
in a single step.

In particular, even poorly scaled quadratic functions are exactly minimized.

For this reason, Newton-type methods are called scale invariant.

Naturally there is a price to pay: computing r2
f is much more expensive than rf .

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Stepsizes

We’ll now discuss choosing stepsizes. Our update takes the form,

xk`1 “ xk ` ↵kdk.

We will always consider dk to be a descent direction.

For notational simplicity, we’ll assume k is fixed, and remove dependence of ↵k, dk

on k. I.e., we have,

xk`1 “ xk ` ↵d.

Note: ↵ and d typically always depend on k!

Let’s assume d is chosen and fixed (as a descent direction).

What are some common ways that ↵ is chosen?

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Stepsizes

We’ll now discuss choosing stepsizes. Our update takes the form,

xk`1 “ xk ` ↵kdk.

We will always consider dk to be a descent direction.

For notational simplicity, we’ll assume k is fixed, and remove dependence of ↵k, dk

on k. I.e., we have,

xk`1 “ xk ` ↵d.

Note: ↵ and d typically always depend on k!

Let’s assume d is chosen and fixed (as a descent direction).

What are some common ways that ↵ is chosen?

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Exact linesearch

The simplest approach is, unfortunately, the least practical.

Exact linesearch determines ↵ through an optimization,

↵ “ argmin
�°0

fpxk ` �dq.

Things to note:
– The above problem is guaranteed to have a solution since d is a descent

direction.
– This optimization is in principle much easier than the original problem: the

above is a one-dimensional optimization instead of an n-dimensional one.
– This is still quite an expensive problem since several evaluations of f (and

probably rf are required)
Most popular approaches are inexact linesearch methods, based on various
conditions.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Sufficient decrease

A particularly simple inexact method is that of sufficient decrease.

Locally near xk, the function f behaves like its linear Taylor series,

fpxk ` ↵dq « fpxkq ` ↵d
Trfpxkq.

This gives us an expected decrease: for a given small ↵, the improvement in f is
approximately,

fpxk ` ↵dq ´ fpxkq « ↵d
Trfpxkq.

Of course, unless we get lucky the actual decrease will be smaller than this.

Sufficient decrease, or the Armijo condition, imposes the following condition on ↵:

fpxk ` ↵dq ´ fpxkq § c↵d
Trfpxkq,

for a constant c P p0, 1q. Choosing c is a bit of an art.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Sufficient decrease

A particularly simple inexact method is that of sufficient decrease.

Locally near xk, the function f behaves like its linear Taylor series,

fpxk ` ↵dq « fpxkq ` ↵d
Trfpxkq.

This gives us an expected decrease: for a given small ↵, the improvement in f is
approximately,

fpxk ` ↵dq ´ fpxkq « ↵d
Trfpxkq.

Of course, unless we get lucky the actual decrease will be smaller than this.

Sufficient decrease, or the Armijo condition, imposes the following condition on ↵:

fpxk ` ↵dq ´ fpxkq § c↵d
Trfpxkq,

for a constant c P p0, 1q. Choosing c is a bit of an art.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Backtracking

A very popular appraoch combines sufficient decrease with backtracking :
– Fix c, r P p0, 1q. Initialize some “large” ↵ ° 0

– While sufficient decrease is not met, i.e., fpxk `↵dq ´ fpxkq ° c↵d
Trfpxkq:

§ Set ↵ – ↵r

The while loop must terminate if d is a descent direction.
Typically, r “ rk is chosen in a problem-dependent way.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The Wolfe conditions

One problem with sufficient decrease + backtracking: values ↵ can be very small.

To mitigate small step sizes, we impose a stronger pair of conditions on ↵.

One condition is again sufficient decrease,

fpxk ` ↵dq ´ fpxkq § c↵d
Trfpxkq, (1a)

the second is the additional condition:

d
Trfpxk ` ↵dq • c̃d

Trfpxkq. (1b)

for some other constant c̃ P pc, 1q. The pair (1) are the Wolfe conditions.

The second, “curvature” Wolfe condition states that the one-dimensional function
↵ fiÑ fpxk ` ↵dq is less steep at xk`1 compared to xk.

If this less steep condition fails for small ↵, it suggests that making ↵ larger can
significantly decrease the objective.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The Wolfe conditions

One problem with sufficient decrease + backtracking: values ↵ can be very small.

To mitigate small step sizes, we impose a stronger pair of conditions on ↵.

One condition is again sufficient decrease,

fpxk ` ↵dq ´ fpxkq § c↵d
Trfpxkq, (1a)

the second is the additional condition:

d
Trfpxk ` ↵dq • c̃d

Trfpxkq. (1b)

for some other constant c̃ P pc, 1q. The pair (1) are the Wolfe conditions.

The second, “curvature” Wolfe condition states that the one-dimensional function
↵ fiÑ fpxk ` ↵dq is less steep at xk`1 compared to xk.

If this less steep condition fails for small ↵, it suggests that making ↵ larger can
significantly decrease the objective.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Strong Wolfe conditions
34 C H A P T E R 3 . L I N E S E A R C H M E T H O D S

desired
slope

k)φ (α) =f(xk+α p

tangent
α

acceptableacceptable

Figure 3.4 The curvature condition.

is strongly negative, we have an indication that we can reduce f significantly by moving
further along the chosen direction.

On the other hand, if φ′(αk) is only slightly negative or even positive, it is a sign that
we cannot expect much more decrease in f in this direction, so it makes sense to terminate
the line search. The curvature condition is illustrated in Figure 3.4. Typical values of c2 are
0.9 when the search direction pk is chosen by a Newton or quasi-Newton method, and 0.1
when pk is obtained from a nonlinear conjugate gradient method.

The sufficient decrease and curvature conditions are known collectively as the Wolfe
conditions. We illustrate them in Figure 3.5 and restate them here for future reference:

f (xk + αk pk) ≤ f (xk) + c1αk∇ f T
k pk, (3.6a)

∇ f (xk + αk pk)T pk ≥ c2∇ f T
k pk, (3.6b)

with 0 < c1 < c2 < 1.
A step length may satisfy the Wolfe conditions without being particularly close to a

minimizer of φ, as we show in Figure 3.5. We can, however, modify the curvature condition
to force αk to lie in at least a broad neighborhood of a local minimizer or stationary point
of φ. The strong Wolfe conditions require αk to satisfy

f (xk + αk pk) ≤ f (xk) + c1αk∇ f T
k pk, (3.7a)

|∇ f (xk + αk pk)T pk | ≤ c2|∇ f T
k pk |, (3.7b)

with 0 < c1 < c2 < 1. The only difference with the Wolfe conditions is that we no longer
allow the derivative φ′(αk) to be too positive. Hence, we exclude points that are far from
stationary points of φ.

Image: Figure 3.5, Nocedal & Wright, Numerical Optimization

The strong Wolfe conditions strengthen the curvature condition to,
ˇ̌
ˇdTrfpxk ` ↵dq

ˇ̌
ˇ § c̃

ˇ̌
ˇdTrfpxkq

ˇ̌
ˇ

which disallows large positive values of f 1pxk ` ↵dq.

Under mild assumptions on f and xk, there is always some ↵ satisfying the
strong/Wolfe conditions.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Strong Wolfe conditions
34 C H A P T E R 3 . L I N E S E A R C H M E T H O D S

desired
slope

k)φ (α) =f(xk+α p

tangent
α

acceptableacceptable

Figure 3.4 The curvature condition.

is strongly negative, we have an indication that we can reduce f significantly by moving
further along the chosen direction.

On the other hand, if φ′(αk) is only slightly negative or even positive, it is a sign that
we cannot expect much more decrease in f in this direction, so it makes sense to terminate
the line search. The curvature condition is illustrated in Figure 3.4. Typical values of c2 are
0.9 when the search direction pk is chosen by a Newton or quasi-Newton method, and 0.1
when pk is obtained from a nonlinear conjugate gradient method.

The sufficient decrease and curvature conditions are known collectively as the Wolfe
conditions. We illustrate them in Figure 3.5 and restate them here for future reference:

f (xk + αk pk) ≤ f (xk) + c1αk∇ f T
k pk, (3.6a)

∇ f (xk + αk pk)T pk ≥ c2∇ f T
k pk, (3.6b)

with 0 < c1 < c2 < 1.
A step length may satisfy the Wolfe conditions without being particularly close to a

minimizer of φ, as we show in Figure 3.5. We can, however, modify the curvature condition
to force αk to lie in at least a broad neighborhood of a local minimizer or stationary point
of φ. The strong Wolfe conditions require αk to satisfy

f (xk + αk pk) ≤ f (xk) + c1αk∇ f T
k pk, (3.7a)

|∇ f (xk + αk pk)T pk | ≤ c2|∇ f T
k pk |, (3.7b)

with 0 < c1 < c2 < 1. The only difference with the Wolfe conditions is that we no longer
allow the derivative φ′(αk) to be too positive. Hence, we exclude points that are far from
stationary points of φ.

Image: Figure 3.5, Nocedal & Wright, Numerical Optimization

The strong Wolfe conditions strengthen the curvature condition to,
ˇ̌
ˇdTrfpxk ` ↵dq

ˇ̌
ˇ § c̃

ˇ̌
ˇdTrfpxkq

ˇ̌
ˇ

which disallows large positive values of f 1pxk ` ↵dq.

Under mild assumptions on f and xk, there is always some ↵ satisfying the
strong/Wolfe conditions.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The Goldstein conditions

xk`1 “ xk ` ↵d.

Yet another set of conditions are the Goldstein conditions on ↵:

fpxkq ` p1 ´ cq↵dTrfpxkq § fpxk ` ↵dq § fpxkq ` c↵d
Trfpxkq, 0 † c † 1

2
.

Again, the goal is to mitigate small step sizes, but this can be too aggressive.

36 C H A P T E R 3 . L I N E S E A R C H M E T H O D S

the term in the left-hand side of (3.10) is negative, the strong Wolfe conditions (3.7) hold in
the same interval. �

The Wolfe conditions are scale-invariant in a broad sense: Multiplying the objective
function by a constant or making an affine change of variables does not alter them. They can
be used in most line search methods, and are particularly important in the implementation
of quasi-Newton methods, as we see in Chapter 6.

THE GOLDSTEIN CONDITIONS

Like the Wolfe conditions, the Goldstein conditions ensure that the step length α

achieves sufficient decrease but is not too short. The Goldstein conditions can also be stated
as a pair of inequalities, in the following way:

f (xk) + (1 − c)αk∇ f T
k pk ≤ f (xk + αk pk) ≤ f (xk) + cαk∇ f T

k pk, (3.11)

with 0 < c < 1/2. The second inequality is the sufficient decrease condition (3.4), whereas
the first inequality is introduced to control the step length from below; see Figure 3.6

A disadvantage of the Goldstein conditions vis-à-vis the Wolfe conditions is that the
first inequality in (3.11) may exclude all minimizers of φ. However, the Goldstein and Wolfe
conditions have much in common, and their convergence theories are quite similar. The
Goldstein conditions are often used in Newton-type methods but are not well suited for
quasi-Newton methods that maintain a positive definite Hessian approximation.

fk
Tpkcα

Tpkkα (1_ c) f

φ (= f(x k+α pα) k)

acceptable steplengths

α

Figure 3.6 The Goldstein conditions.Image: Figure 3.6, Nocedal & Wright, Numerical Optimization

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Convergence

The goal of descent algorithms is to compute a stationary point.
(Asking for more without extra conditions is unreasonable.)

A method is globally convergent if we can guarantee:

lim
kÒ8

}rfpxkq}2 “ 0.

To discuss convergence we rely on a measure of how parallel our chosen descent
direction dk is to rfpxkq at each step:

cos ✓k :“ ´d
T

k rfpxkq
}dk}}rfpxkq} .

One of the basic tools in convergence theory of descent methods is the Zoutendijk
condition, stating that

8ÿ

k“1

cos2 ✓k}rfpxkq}2 † 8.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Convergence

The goal of descent algorithms is to compute a stationary point.
(Asking for more without extra conditions is unreasonable.)

A method is globally convergent if we can guarantee:

lim
kÒ8

}rfpxkq}2 “ 0.

To discuss convergence we rely on a measure of how parallel our chosen descent
direction dk is to rfpxkq at each step:

cos ✓k :“ ´d
T

k rfpxkq
}dk}}rfpxkq} .

One of the basic tools in convergence theory of descent methods is the Zoutendijk
condition, stating that

8ÿ

k“1

cos2 ✓k}rfpxkq}2 † 8.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Zoutendijk to convergence

8ÿ

k“1

cos2 ✓k}rfpxkq}2 † 8.

Why is this useful? We can convert this into global convergence if,

| cos ✓k| • � ° 0, k P

for some �.

Then this implies:

8ÿ

k“1

}rfpxkq}2 † 8 ùñ lim
kÒ8

}rfpxkq} “ 0,

i.e., global convergence.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Zoutendijk to convergence

8ÿ

k“1

cos2 ✓k}rfpxkq}2 † 8.

Why is this useful? We can convert this into global convergence if,

| cos ✓k| • � ° 0, k P

for some �.

Then this implies:

8ÿ

k“1

}rfpxkq}2 † 8 ùñ lim
kÒ8

}rfpxkq} “ 0,

i.e., global convergence.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Zoutendijk to convergence

| cos ✓k| • � ° 0, k P

What kind of descent directions satisfy this?

– Steepest descent:

cos ✓k “ rfpxkqTrfpxkq
}rfpxkq}2 “ 1.

– Newton’s method: Assume r2
fpxkq ° 0 for all k, and that

pr2pfpxkqqq “ �npr2
fpxkqq

�1pr2fpxkqq § 0 † 8, k P .

Then

cos ✓k • 1
0

° 0.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Global convergence of descent methods

We have established that the Zoutendijk condition ensures global convergence for
certain choices of descent direction. Adherence to the Zoutendijk condition is
determined by an appropriate choice of step size.

Theorem
Let f be bounded below and continuously differentiable with Lipschitz continuous
gradient. Assume an iteration,

xk`1 “ xk ` ↵kdk.

where dk is a descent direction and ↵k. If ↵k is chosen according to the Wolfe
conditions, then p✓k,rfpxkqqk•1 satisfies the Zoutendijk condition.

This result also holds for the strong Wolfe conditions, and for the Goldstein
conditions (with some extra technical assumptions).

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Convergence rates

A rather practical question of course is how quickly these methods converge.

First, some terminology: A method has a pth order convergence rate if,

}xk`1 ´ x˚}2 § r }xk ´ x˚}p2 ,

for some constant r where x˚ is the point the sequence converges to.

We have linear convergence for p “ 1 and quadratic convergence for p “ 2.

Note that, e.g., linear convergence is actually stronger in terms of the actual error
since it implies,

}xk ´ x˚}2 § Cr
k “ Ce

k log r
,

for some constant C.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Convergence rates

A rather practical question of course is how quickly these methods converge.

First, some terminology: A method has a pth order convergence rate if,

}xk`1 ´ x˚}2 § r }xk ´ x˚}p2 ,

for some constant r where x˚ is the point the sequence converges to.

We have linear convergence for p “ 1 and quadratic convergence for p “ 2.

Note that, e.g., linear convergence is actually stronger in terms of the actual error
since it implies,

}xk ´ x˚}2 § Cr
k “ Ce

k log r
,

for some constant C.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

A simple example

Consider the quadratic function,

fpxq “ 1
2
x
T
Ax ´ b

T
x, A ° 0,

The optimal solution is x˚ “ A
´1

b.

Consider steepest descent with exact linesearch:

xk`1 “ xk ´ ↵krfpxkq, ↵k “ rfpxkqTrfpxkq
prfpxkqqTArfpxkq .

Theorem
The error for the above descent algorithm is given by,

}xk`1 ´ x˚} §
ˆ
pAq ´ 1
pAq ` 1

˙
}xk ´ x˚}

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

A simple example

Consider the quadratic function,

fpxq “ 1
2
x
T
Ax ´ b

T
x, A ° 0,

The optimal solution is x˚ “ A
´1

b.

Consider steepest descent with exact linesearch:

xk`1 “ xk ´ ↵krfpxkq, ↵k “ rfpxkqTrfpxkq
prfpxkqqTArfpxkq .

Theorem
The error for the above descent algorithm is given by,

}xk`1 ´ x˚} §
ˆ
pAq ´ 1
pAq ` 1

˙
}xk ´ x˚}

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

First-order convergence

The previous, simple example motivates the general result.

Theorem
Assume that f is continuously differentiable, and we use steepest descent with
exact linesearch, which converges to x˚. If r2

fpx˚q ° 0, then for large k we have,

fk`1 ´ fpx˚q § c
2pfk ´ fpx˚qq,

where c is any number satisfying,

�n ´ �1

�n ` �1
† c † 1,

with �j the ordered eigenvalues of r2
fpx˚q.

Note that generally, first-order convergence is slow.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Newton’s method convergence

Newton’s method, being a local quadratic approximation, is second-order accurate.

Theorem
Assume r2

f is Lipschitz continuous, and that the initial point x0 is “close enough”
to a local minimum x˚. Then:

lim
kÑ8

xk “ x˚, }xk`1 ´ xk} § C }xk ´ x˚}2 .

Furthermore, the gradient norm quadratically converges to 0:

}rfpxk`1q} § rC }rfpxkq}2

The quadratic convergence guarantee of Newton’s method is fantastic.

The problem is the nebulous condition on how close x0 must be to x˚.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Qausi-Newton methods
Quasi-Newton methods use a Newton-like update:

xk`1 “ xk ` ↵kdk, dk “ ´G
´1
k

rfpxkq, (2)

where Gk « r2
fpxkq, and is easier to compute.

Note that since we only approximate the Hessian, quasi-Newton methods introduce
a stepsize ↵k.

Theorem
Suppose that r2

f is continuously differentiable, and that we use the quasi-Newton
update where ↵k is chosen to satisfy the Wolfe conditions1 Assume that xk Ñ x˚
that is a stationary point with r2

fpx˚q ° 0. If Gk « r2
fpx˚q in the following

sense,

lim
kÑ8

››`
Gk ´ r2

fpx˚q˘
dk

››
}dk} “ 0,

then (i) there is some k0 P such that ↵k “ 1 is a Wolfe condition-admissible
choice for k • k0, and (ii) choosing ↵k “ 1 for all k • k0 results in xk converging
superlinearly to x˚.

1A special choice of the constants is also required.
A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Convergence rate summary

Our three main convergence guarantees are:
– Steepest Descent: linear convergence if linesearch conditions are met.

Pretty cheap to implement.

– Newton’s method: quadratic convergence if we start close enough to a local
minimum.
Relatively expensive – computing r2

f is not cheap.

– quasi-Newton methods: superlinear convergence if a “good enough” Hessian
approximation is chosen.
Cost on the order of steepest descent, typically requiring only gradients.

Many “canned” solvers use a convex combination of steepest descent and
quasi-Newton methods:

1. Steepest descent is used initially to quickly reach a neighborhood of an
optimum.

2. Quasi-/Newton methods then take over to bring iterates to the minimum
quickly.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Convergence rate summary

Our three main convergence guarantees are:
– Steepest Descent: linear convergence if linesearch conditions are met.

Pretty cheap to implement.

– Newton’s method: quadratic convergence if we start close enough to a local
minimum.
Relatively expensive – computing r2

f is not cheap.

– quasi-Newton methods: superlinear convergence if a “good enough” Hessian
approximation is chosen.
Cost on the order of steepest descent, typically requiring only gradients.

Many “canned” solvers use a convex combination of steepest descent and
quasi-Newton methods:

1. Steepest descent is used initially to quickly reach a neighborhood of an
optimum.

2. Quasi-/Newton methods then take over to bring iterates to the minimum
quickly.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Basic quasi-Newton methods

Recall Newton’s method:

xk`1 “ xk ´ pr2
fpxkqq´1rfpxkq.

Quasi-Newton methods (a) replace the Hessian with an approximation, and (b)
introduce a stepsize to offset the potential mistake this makes

xk`1 “ xk ´ ↵kG
´1
k

rfpxkq

Why? The main issue is that computing the Hessian is expensive.

One main idea is to form a different quadratic approximation than that dictated by
Taylor series.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Basic quasi-Newton methods

Recall Newton’s method:

xk`1 “ xk ´ pr2
fpxkqq´1rfpxkq.

Quasi-Newton methods (a) replace the Hessian with an approximation, and (b)
introduce a stepsize to offset the potential mistake this makes

xk`1 “ xk ´ ↵kG
´1
k

rfpxkq

Why? The main issue is that computing the Hessian is expensive.

One main idea is to form a different quadratic approximation than that dictated by
Taylor series.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Local approximations

There are several quasi-Newton algorithms. The most popular ones (BFGS+DFP)
use quadratic approximations:

Near xk, the function f is approximated by,

mkpdq “ fpxkq ` d
Trfpxkq ` 1

2
d
T
Gkd,

where Gk is updated at every k.

Assuming Gk ° 0, the above approximation to f has an explicitly computable
minimum:

dk “ ´G
´1
k

rfpxkq,

which is used to perform the update,

xk`1 “ xk ´ ↵kdk,

where ↵k is chosen to satisfy the Wolfe conditions.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Local approximations

There are several quasi-Newton algorithms. The most popular ones (BFGS+DFP)
use quadratic approximations:

Near xk, the function f is approximated by,

mkpdq “ fpxkq ` d
Trfpxkq ` 1

2
d
T
Gkd,

where Gk is updated at every k.

Assuming Gk ° 0, the above approximation to f has an explicitly computable
minimum:

dk “ ´G
´1
k

rfpxkq,

which is used to perform the update,

xk`1 “ xk ´ ↵kdk,

where ↵k is chosen to satisfy the Wolfe conditions.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Key observations

The key advances in quasi-Newton methods utilize the following:
– Gk`1 need not be entirely recomputed at every stage. Rather, it’s chosen as a

low-rank update to Gk.
– Inverses of low-rank augmented matrices are efficiently computable from

original matrix inverses.

Theorem (Sherman-Morrison-Woodbury)

Let A P nˆn, and let uin
n be such that u

T
Au ‰ ´1. Then,

´
A ` uu

T

¯´1
“ A

´1 ´ pA´1
uqpA´1

uqT
1 ` uTA´1u

.

This property is one key result that makes quasi-Newton methods so effective – it
makes them computationally efficient.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Key observations

The key advances in quasi-Newton methods utilize the following:
– Gk`1 need not be entirely recomputed at every stage. Rather, it’s chosen as a

low-rank update to Gk.
– Inverses of low-rank augmented matrices are efficiently computable from

original matrix inverses.

Theorem (Sherman-Morrison-Woodbury)

Let A P nˆn, and let uin
n be such that u

T
Au ‰ ´1. Then,

´
A ` uu

T

¯´1
“ A

´1 ´ pA´1
uqpA´1

uqT
1 ` uTA´1u

.

This property is one key result that makes quasi-Newton methods so effective – it
makes them computationally efficient.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Updating Gk

How are these low-rank updates performed?

Assume we are at location xk`1, with Gk « rf
2pxkq available from the previous

step.

Our goal is to construct some Hessian approximation Gk`1.

Again, the main idea is that we form a local approximation around xk`1 for use in
determining iterate k ` 1:

mk`1psq “ fpxk`1q ` s
Trfpxk`1q ` 1

2
s
T
Gk`1s,

where s represents the deviation from xk`1.

We impose the following (reasonable) requirements:
– The gradient of mk`1 at xk`1 matches that of f :

rmk`1p0q “ rfpxk`1q – this is already satisfied.

– The gradient of mk`1 at xk matches that of f :
rmk`1pxk ´ xk`1q “ rfpxkq

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Updating Gk

How are these low-rank updates performed?

Assume we are at location xk`1, with Gk « rf
2pxkq available from the previous

step.

Our goal is to construct some Hessian approximation Gk`1.

Again, the main idea is that we form a local approximation around xk`1 for use in
determining iterate k ` 1:

mk`1psq “ fpxk`1q ` s
Trfpxk`1q ` 1

2
s
T
Gk`1s,

where s represents the deviation from xk`1.

We impose the following (reasonable) requirements:
– The gradient of mk`1 at xk`1 matches that of f :

rmk`1p0q “ rfpxk`1q – this is already satisfied.

– The gradient of mk`1 at xk matches that of f :
rmk`1pxk ´ xk`1q “ rfpxkq

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The secant equation

We seek to impose

rmk`1pxk ´ xk`1q “ rfpxkq.

Using xk`1 “ xk ` ↵kdk, this results in,

Gk`1 p↵kdkq “ rfpxk`1q ´ rfpxkq.

Simplified notation for this is often used,

sk :“ xk`1 ´ xk, yk :“ rfpxk`1q ´ rfpxkq,

resulting in,

Gk`1sk “ yk

This is called the secant equation.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The secant equation

We seek to impose

rmk`1pxk ´ xk`1q “ rfpxkq.

Using xk`1 “ xk ` ↵kdk, this results in,

Gk`1 p↵kdkq “ rfpxk`1q ´ rfpxkq.

Simplified notation for this is often used,

sk :“ xk`1 ´ xk, yk :“ rfpxk`1q ´ rfpxkq,

resulting in,

Gk`1sk “ yk

This is called the secant equation.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The curvature condition

The secant equation requires,

Gk`1sk “ yk

Recall that Gk`1 should be positive-definite – this means we require

s
T

k yk ° 0

The above is the curvature condition.

If sk and yk are such that the curvature condition is satisfied, it is always possible
to find a (symmetric, positive-definite) solution Gk`1.

How to satisfy the curvature condition?

Lemma
Choosing ↵k to satisfy the Wolfe conditions ensures that the curvature condition is
satisfied.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The curvature condition

The secant equation requires,

Gk`1sk “ yk

Recall that Gk`1 should be positive-definite – this means we require

s
T

k yk ° 0

The above is the curvature condition.

If sk and yk are such that the curvature condition is satisfied, it is always possible
to find a (symmetric, positive-definite) solution Gk`1.

How to satisfy the curvature condition?

Lemma
Choosing ↵k to satisfy the Wolfe conditions ensures that the curvature condition is
satisfied.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The curvature condition

The secant equation requires,

Gk`1sk “ yk

Recall that Gk`1 should be positive-definite – this means we require

s
T

k yk ° 0

The above is the curvature condition.

If sk and yk are such that the curvature condition is satisfied, it is always possible
to find a (symmetric, positive-definite) solution Gk`1.

How to satisfy the curvature condition?

Lemma
Choosing ↵k to satisfy the Wolfe conditions ensures that the curvature condition is
satisfied.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Computing Gk`1

Gk`1sk “ yk

Under the curvature conditions, we can find a solution Gk`1. How to find a unique
one?

Let’s find the solution “closest” to the previous iterate Gk:

Gk`1 “ argmin
G“GT

}G ´ Gk} subject to Gsk “ yk

The choice of norm is, of course, up for grabs.

A convenient norm that makes the solution explicit is the weighted Frobenius norm,

}A}W,F :“ }
?
WA

?
W }F , W “

ª 1

0

r2
fpxk ` �↵kdkqd�,

i.e., W is an averaged Hessian.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Computing Gk`1

Gk`1sk “ yk

Under the curvature conditions, we can find a solution Gk`1. How to find a unique
one?

Let’s find the solution “closest” to the previous iterate Gk:

Gk`1 “ argmin
G“GT

}G ´ Gk} subject to Gsk “ yk

The choice of norm is, of course, up for grabs.

A convenient norm that makes the solution explicit is the weighted Frobenius norm,

}A}W,F :“ }
?
WA

?
W }F , W “

ª 1

0

r2
fpxk ` �↵kdkqd�,

i.e., W is an averaged Hessian.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Computing Gk`1

Gk`1sk “ yk

Under the curvature conditions, we can find a solution Gk`1. How to find a unique
one?

Let’s find the solution “closest” to the previous iterate Gk:

Gk`1 “ argmin
G“GT

}G ´ Gk} subject to Gsk “ yk

The choice of norm is, of course, up for grabs.

A convenient norm that makes the solution explicit is the weighted Frobenius norm,

}A}W,F :“ }
?
WA

?
W }F , W “

ª 1

0

r2
fpxk ` �↵kdkqd�,

i.e., W is an averaged Hessian.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The Davidon-Fletcher-Powell method

The solution in this weighted norm is actually explicit:

Gk`1 “ pI ´ ⇢kyks
T

k qGkpI ´ ⇢ksky
T

k q ` ⇢kyky
T

k

“ Gk ´ ⇢kpyksTk Gk ` Gksky
T

k q ` ⇢kyky
T

k ,

where ⇢k “ 1{pyT

k skq.

This choice of Gk`1 (along with choosing ↵k`1 via the Wolfe conditions) is the
Davidon-Fletcher-Powell (DFP) method.

For numerical efficiency, instead of updating Gk, its inverse Hk :“ G
´1
k

is updated.

The above is a rank-two update of Gk, implying via SMW that its inverse is also
computable via a rank-two update:

Hk`1 “ Hk ´ Hkyky
T

k Hk

y
T

k
Hkyk

` ⇢ksks
T

k .

This shows the strength of quasi-Newton methods: only sk and yk are needed
(gradients), and approximations to the Hessian Hk`1 are quickly computable.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The Davidon-Fletcher-Powell method

The solution in this weighted norm is actually explicit:

Gk`1 “ pI ´ ⇢kyks
T

k qGkpI ´ ⇢ksky
T

k q ` ⇢kyky
T

k

“ Gk ´ ⇢kpyksTk Gk ` Gksky
T

k q ` ⇢kyky
T

k ,

where ⇢k “ 1{pyT

k skq.

This choice of Gk`1 (along with choosing ↵k`1 via the Wolfe conditions) is the
Davidon-Fletcher-Powell (DFP) method.

For numerical efficiency, instead of updating Gk, its inverse Hk :“ G
´1
k

is updated.

The above is a rank-two update of Gk, implying via SMW that its inverse is also
computable via a rank-two update:

Hk`1 “ Hk ´ Hkyky
T

k Hk

y
T

k
Hkyk

` ⇢ksks
T

k .

This shows the strength of quasi-Newton methods: only sk and yk are needed
(gradients), and approximations to the Hessian Hk`1 are quickly computable.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Closely related to DFP: BFGS

An approach dual to DFP is BFGS. Recall the secant equation:

Gk`1sk “ yk

Writing Hk :“ G
´1
k

, this is the same as

Hk`1yk “ sk.

Instead of optimizing for the closest G to Gk (as DFP does), we could optimize for
the closest H to Hk:

Gk`1 “ argmin
H“HT

}H ´ Hk} subject to Hyk “ sk

Unsurprisingly, the solution is formulaically very similar to DFP:

Hk`1 “ pI ´ ⇢ksky
T

k qHkpI ´ ⇢kyks
T

k q ` ⇢sks
T

k

“ Hk ´ ⇢kpskyT

k Hk ` Hkyks
T

k q ` ⇢ksks
T

k .

The update above for H constitutes the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Closely related to DFP: BFGS

An approach dual to DFP is BFGS. Recall the secant equation:

Gk`1sk “ yk

Writing Hk :“ G
´1
k

, this is the same as

Hk`1yk “ sk.

Instead of optimizing for the closest G to Gk (as DFP does), we could optimize for
the closest H to Hk:

Gk`1 “ argmin
H“HT

}H ´ Hk} subject to Hyk “ sk

Unsurprisingly, the solution is formulaically very similar to DFP:

Hk`1 “ pI ´ ⇢ksky
T

k qHkpI ´ ⇢kyks
T

k q ` ⇢sks
T

k

“ Hk ´ ⇢kpskyT

k Hk ` Hkyks
T

k q ` ⇢ksks
T

k .

The update above for H constitutes the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Quasi-Newton methods
DFP and BFGS are the most popular quasi-Newton methods.

– BFGS is typically considered “better” as it has better empirical self-correction
properties (which have some theoretical underpinning)

– The initial Hessian H0 needs to be chosen. Typically it’s initialized as the
exact Hessian (which requires only 1 full Hessian computation), based on some
problem-specific knowledge, or is chosen as the identity.

– BFGS (with the Wolfe conditions on stepsize) is essentially the modern gold
standard quasi-Newton method.

6 . 1 . T H E B F G S M E T H O D 141

A naive implementation of this variant is not efficient for unconstrained minimization,
because it requires the system Bk pk ! −∇ fk to be solved for the step pk , thereby increasing
the cost of the step computation to O(n3). We discuss later, however, that less expensive
implementations of this variant are possible by updating Cholesky factors of Bk .

PROPERTIES OF THE BFGS METHOD

It is usually easy to observe the superlinear rate of convergence of the BFGS method
on practical problems. Below, we report the last few iterations of the steepest descent, BFGS,
and an inexact Newton method on Rosenbrock’s function (2.22). The table gives the value of
‖xk −x∗‖. The Wolfe conditions were imposed on the step length in all three methods. From
the starting point (−1.2, 1), the steepest descent method required 5264 iterations, whereas
BFGS and Newton took only 34 and 21 iterations, respectively to reduce the gradient norm
to 10−5.

steepest BFGS Newton
descent

1.827e-04 1.70e-03 3.48e-02
1.826e-04 1.17e-03 1.44e-02
1.824e-04 1.34e-04 1.82e-04
1.823e-04 1.01e-06 1.17e-08

A few points in the derivation of the BFGS and DFP methods merit further discussion.
Note that the minimization problem (6.16) that gives rise to the BFGS update formula does
not explicitly require the updated Hessian approximation to be positive definite. It is easy to
show, however, that Hk+1 will be positive definite whenever Hk is positive definite, by using
the following argument. First, note from (6.8) that yT

k sk is positive, so that the updating
formula (6.17), (6.14) is well-defined. For any nonzero vector z, we have

zT Hk+1z ! wT Hkw + ρk(zT sk)2 ≥ 0,

where we have defined w ! z − ρk yk(sT
k z). The right hand side can be zero only if sT

k z ! 0,
but in this case w ! z '! 0, which implies that the first term is greater than zero. Therefore,
Hk+1 is positive definite.

To make quasi-Newton updating formulae invariant to transformations in the vari-
ables (such as scaling transformations), it is necessary for the objectives (6.9a) and (6.16a)
to be invariant under the same transformations. The choice of the weighting matrices W
used to define the norms in (6.9a) and (6.16a) ensures that this condition holds. Many other
choices of the weighting matrix W are possible, each one of them giving a different update
formula. However, despite intensive searches, no formula has been found that is significantly
more effective than BFGS.

Nocedal & Wright, Numerical Optimization

Steepest descent is slow to converge (5264 iterations), but fast to compute.

Newton’s method is fast to converge (21 iterations), but slow to compute.

Quasi-Newton methods are typically fast to converge (34 iterations) and fast to
compute.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Moving on from linesearch

Linesearch methods were our starting point:

xk`1 “ xk ` ↵kdk.

We choose dk (steepest descent, quasi-/Newton), and subsequently try to choose
the “best” ↵k.

An alternative collection of strategies are trust region methods.

Loosely speaking, trust region methods
– choose a value for ↵k (rather, a region of “trust” in a local approximation to f)
– choose a descent direction that is best inside this region
– iterates the procedure, making the trust region smaller if adequate objective

decrease is not observed

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Trust region methods

The basic anatomy of one iteration of a trust region method is as follows:

– “Construct” a model mkp¨q to fp¨q. This construction can use information
from the current iteration (e.g., gradients) along with history.

– Decide on a trust region radius �k ° 0 where mk is deemed sufficiently
accurate

– Solve the optimization problem:

xk`1 ´ xk “ argmin
d

mkpdq subject to }d} § �k,

where any norm } ¨ } can be chosen. (} ¨ } “ } ¨ }2 is the most common choice.)
Trust region methods therefore solve subproblems at each step.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

How to choose trust region radii?

The trust region radius �k is typically chosen heuristically, based on a computable
indicator:

dk “ xk`1 ´ xk⇢k “ fpxkq ´ fpxk`1q
mkp0q ´ mkpdkq .

The basic idea (without details): Given some initial value of �k,
1. Solve the trust region subproblem for dk
2. Compute ⇢k above
3. If ⇢k is “big enough”

§ If }dk} “ �k, make �k`1 larger than �k

§ If }dk} † �k, set �k`1 “ �k

4. If ⇢k is “too small”:
§ Make �k`1 smaller than �k

§ Set dk “ 0 and xk`1 “ xk (i.e., rewind the k ` 1 step)

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

How to choose trust region radii?

The trust region radius �k is typically chosen heuristically, based on a computable
indicator:

dk “ xk`1 ´ xk⇢k “ fpxkq ´ fpxk`1q
mkp0q ´ mkpdkq .

The basic idea (without details): Given some initial value of �k,
1. Solve the trust region subproblem for dk
2. Compute ⇢k above
3. If ⇢k is “big enough”

§ If }dk} “ �k, make �k`1 larger than �k

§ If }dk} † �k, set �k`1 “ �k

4. If ⇢k is “too small”:
§ Make �k`1 smaller than �k

§ Set dk “ 0 and xk`1 “ xk (i.e., rewind the k ` 1 step)

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

A simple specialization
The most common model mk is a quadratic model based on a Taylor expansion:

mkpdq “ fpxkq ` d
Trfpxkq ` 1

2
d
T
Gkd,

where Gk « r2
fpxkq is typically sought.

If we use the Euclidean norm for the trust region optimization subproblem, we are
solving:

xk`1 ´ xk “ argmin
d

fpxkq ` d
Trfpxkq ` 1

2
d
T
Gkd subject to }d} § �k.

Note: if Gk ° 0, and }G´1
k

rfpxkq} § �k, then the solution to the above problem
is exactly,

xk`1 “ xk ´ G
´1
k

rfpxkq

Most of the time, we do not achieve this unconstrained minimum, and instead must
actually solve a constrained optimization problem.

The silver lining is that in practice only an approximate solution is required.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

A simple specialization
The most common model mk is a quadratic model based on a Taylor expansion:

mkpdq “ fpxkq ` d
Trfpxkq ` 1

2
d
T
Gkd,

where Gk « r2
fpxkq is typically sought.

If we use the Euclidean norm for the trust region optimization subproblem, we are
solving:

xk`1 ´ xk “ argmin
d

fpxkq ` d
Trfpxkq ` 1

2
d
T
Gkd subject to }d} § �k.

Note: if Gk ° 0, and }G´1
k

rfpxkq} § �k, then the solution to the above problem
is exactly,

xk`1 “ xk ´ G
´1
k

rfpxkq

Most of the time, we do not achieve this unconstrained minimum, and instead must
actually solve a constrained optimization problem.

The silver lining is that in practice only an approximate solution is required.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Trust region Hessians

If we choose a quadratic model,

mkpdq “ fpxkq ` d
Trfpxkq ` 1

2
d
T
Gkd,

how are the Gk approximations chosen?

Exact Hessians: Newton Trust Region methods.
Approximate Hessians: quasi-Newton Trust Region methods.

It’s important to note that Newton Trust Region methods are not the same as
Newton’s method with a stepsize restriction!

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

Solutions to the subproblem

We seek to compute solutions to

xk`1 ´ xk “ argmin
d

fpxkq ` d
Trfpxkq ` 1

2
d
T
Gkd subject to }d} § �k.

Note that this is a (fairly simple) constrained optimization problem – there are KKT
conditions for its solution.

However, directly solving these is not really straightforward or cheap, so
approximate methods are used.

We’ll look at two of the simplest approaches:
– The Cauchy point method
– The dogleg method

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The Cauchy point, I

xk`1 ´ xk “ argmin
d

mkpdq subject to }d} § �k.

mkpdq “ fpxkq ` d
Trfpxkq ` 1

2
d
T
Gkd

The simplest Cauchy point method is straightforward:
– Linearize mk (mk « fpxkq ` d

Trfpxkq)
– Choose dk to minimize the linearized mk within the trust region. Set

dk – dk{}dk}.
– Minimize mkp�dkq for � § �k (linesearch)

Finding the unit norm d that minimizes the linearized mk within the trust region is
easy:

dk “ ´ rfpxkq
}rfpxkq}

Since mkp�dkq is now a quadratic function in one variable with an interval
constraint on �, it is also easily minimized.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The Cauchy point, I

xk`1 ´ xk “ argmin
d

mkpdq subject to }d} § �k.

mkpdq “ fpxkq ` d
Trfpxkq ` 1

2
d
T
Gkd

The simplest Cauchy point method is straightforward:
– Linearize mk (mk « fpxkq ` d

Trfpxkq)
– Choose dk to minimize the linearized mk within the trust region. Set

dk – dk{}dk}.
– Minimize mkp�dkq for � § �k (linesearch)

Finding the unit norm d that minimizes the linearized mk within the trust region is
easy:

dk “ ´ rfpxkq
}rfpxkq}

Since mkp�dkq is now a quadratic function in one variable with an interval
constraint on �, it is also easily minimized.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The Cauchy point, II

dk “ ´ rfpxkq
}rfpxkq}

�k “ argmin
�Pr0,�ks

mkp�dkq.

The solution is:

�k “
#

�k rfpxkqTGkrfpxkq § 0.

min
!

}rfpxkq}3
rfpxkqTGkrfpxkq ,�k

)
, otherwise

The final update is

xk`1 “ xk ` �kdk.

The Cauchy point isn’t very sophisticated: dependence on the Hessian is weak,
playing a role only in the stepsize choice, and not in the descent direction.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The Cauchy point, II

dk “ ´ rfpxkq
}rfpxkq}

�k “ argmin
�Pr0,�ks

mkp�dkq.

The solution is:

�k “
#

�k rfpxkqTGkrfpxkq § 0.

min
!

}rfpxkq}3
rfpxkqTGkrfpxkq ,�k

)
, otherwise

The final update is

xk`1 “ xk ` �kdk.

The Cauchy point isn’t very sophisticated: dependence on the Hessian is weak,
playing a role only in the stepsize choice, and not in the descent direction.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The dogleg method, I

xk`1 ´ xk “ argmin
d

mkpdq subject to }d} § �k.

mkpdq “ fpxkq ` d
Trfpxkq ` 1

2
d
T
Gkd

The dogleg method improves on the Cauchy point. We assume Gk ° 0. Here is the
idea:

If the global minimizer of mk is within the trust region, we’re done, so assume
otherwise.

For infinitesimal �k, mk is approximately linear, so as a function of � ! 1, we have

´�
rfpxkq

}rfpxkq} « argmin
d

mkpdq,

which again just asserts that steepest descent is optimal for small �.

Along this direction, we can compute the exact unconstrained minimum of mk:

argmin
�rfpxkq

mkp�rfpxkqq “ ´ }rfpxkq}2
prfpxkqqTGkrfpxkqrfpxkq.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The dogleg method, I

xk`1 ´ xk “ argmin
d

mkpdq subject to }d} § �k.

mkpdq “ fpxkq ` d
Trfpxkq ` 1

2
d
T
Gkd

The dogleg method improves on the Cauchy point. We assume Gk ° 0. Here is the
idea:

If the global minimizer of mk is within the trust region, we’re done, so assume
otherwise.

For infinitesimal �k, mk is approximately linear, so as a function of � ! 1, we have

´�
rfpxkq

}rfpxkq} « argmin
d

mkpdq,

which again just asserts that steepest descent is optimal for small �.

Along this direction, we can compute the exact unconstrained minimum of mk:

argmin
�rfpxkq

mkp�rfpxkqq “ ´ }rfpxkq}2
prfpxkqqTGkrfpxkqrfpxkq.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The dogleg method, II

The dogleg method considers the following piecewise secant trajectory
paramaterized by ⌧ P r0, 2s:

– ⌧ P r0, 1s: The line segment from the origin to the unconstrained minimum of
mk along ´rfpxkq:

dp⌧q “ ´⌧
}rfpxkq}2

prfpxkqqTGkrfpxkqrfpxkq, 0 § ⌧ § 1.

– ⌧ P r0, 2s: The line segment from dp1q to the unconstrained minimum of mk:

dp⌧q “ dp1q ` p⌧ ´ 1qp´G
´1
k

rfpxkq ´ dp1qq, 1 † ⌧ § 2.

The method itself computes the minimum of mk within the trust region along this
secant trajectory:

⌧k “ argmin
⌧Pr0,2s, }dp⌧q}§�k

mkpdp⌧qq, xk`1 “ xk ` dp⌧kq.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The dogleg method, II

The dogleg method considers the following piecewise secant trajectory
paramaterized by ⌧ P r0, 2s:

– ⌧ P r0, 1s: The line segment from the origin to the unconstrained minimum of
mk along ´rfpxkq:

dp⌧q “ ´⌧
}rfpxkq}2

prfpxkqqTGkrfpxkqrfpxkq, 0 § ⌧ § 1.

– ⌧ P r0, 2s: The line segment from dp1q to the unconstrained minimum of mk:

dp⌧q “ dp1q ` p⌧ ´ 1qp´G
´1
k

rfpxkq ´ dp1qq, 1 † ⌧ § 2.

The method itself computes the minimum of mk within the trust region along this
secant trajectory:

⌧k “ argmin
⌧Pr0,2s, }dp⌧q}§�k

mkpdp⌧qq, xk`1 “ xk ` dp⌧kq.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

The dogleg method, II
74 C H A P T E R 4 . T R U S T - R E G I O N M E T H O D S

)∆

pB full step()

—g)pU

—g

Trust region

pOptimal trajectory

dogleg path

unconstrained min along(

(

Figure 4.4 Exact trajectory and dogleg approximation.

by simply omitting the quadratic term from (4.5) and writing

p∗(!) ≈ −!
g

‖g‖
, when ! is small. (4.14)

For intermediate values of !, the solution p∗(!) typically follows a curved trajectory like
the one in Figure 4.4.

The dogleg method finds an approximate solution by replacing the curved trajectory
for p∗(!) with a path consisting of two line segments. The first line segment runs from the
origin to the minimizer of m along the steepest descent direction, which is

pU % − gT g
gT Bg

g, (4.15)

while the second line segment runs from pU to pB (see Figure 4.4). Formally, we denote this
trajectory by p̃(τ) for τ ∈ [0, 2], where

p̃(τ) %
{

τ pU, 0 ≤ τ ≤ 1,

pU + (τ − 1)(pB − pU), 1 ≤ τ ≤ 2.
(4.16)

The dogleg method chooses p to minimize the model m along this path, subject to
the trust-region bound. The following lemma shows that the minimum along the dogleg
path can be found easily.

Image: Figure 4.4, Nocedal & Wright, Numerical Optimization

One can show that mk is decreasing along the dogleg path as ⌧ increases. Thus,
one needs only to pick ⌧ as large as possible without leaving the trust region, which
can be done explicitly.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

References I

Larry Armijo, Minimization of functions having Lipschitz continuous first
partial derivatives, Pacific Journal of Mathematics 16 (1966), no. 1, 1–3.

Amir Beck, Introduction to Nonlinear Optimization, MOS-SIAM Series on
Optimization, Society for Industrial and Applied Mathematics, October 2014.

, First-Order Methods in Optimization, MOS-SIAM Series on
Optimization, Society for Industrial and Applied Mathematics, October 2017.

W. C. Davidon, VARIABLE METRIC METHOD FOR MINIMIZATION, Tech.
Report ANL-5990, Argonne National Lab., Lemont, Ill., 1959.

William C. Davidon, Variable Metric Method for Minimization, SIAM Journal
on Optimization 1 (1991), no. 1, 1–17, Publisher: Society for Industrial and
Applied Mathematics.

J. E. Dennis and Robert B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Classics in Applied Mathematics,
Society for Industrial and Applied Mathematics, 1996.

Jr. Dennis, J. E. and Jorge J. Moré, Quasi-Newton Methods, Motivation and
Theory, SIAM Review 19 (1977), no. 1, 46–89.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

References II

R. Fletcher, Practical Methods of Optimization, Wiley, 1987,
Google-Books-ID: W0zvAAAAMAAJ.

Jorge Nocedal, Theory of algorithms for unconstrained optimization, Acta
Numerica 1 (1992), 199–242.

Jorge Nocedal and S. Wright, Numerical Optimization, 2 ed., Springer Series
in Operations Research and Financial Engineering, Springer-Verlag, New York,
2006.

J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations
in Several Variables, Classics in Applied Mathematics, 2000.

Philip Wolfe, Convergence Conditions for Ascent Methods, SIAM Review 11
(1969), no. 2, 226–235.

, Convergence Conditions for Ascent Methods. II: Some Corrections,
SIAM Review 13 (1971), no. 2, 185–188.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I

