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Descent algorithms

A foundational computational algorithmic idea for unconstrained + smooth
optimization is a descent method.

Many optimization tools are variants of descent methods. We’ll tour such methods.
– The basic descent method
– First- and second-order methods
– Convergence guarantees
– quasi-Newton methods
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The descent method

Consider the unconstrained optimization,

min
xP n

fpxq

When we cannot solve this analytically, algorithms are our recourse.

Most optimization algorithms are iterative, meaning that an initial guess is
repeatedly improved.

The most common method for performing the “improvement” is to geometrically
travel in a descent direction.

Definition
Given a continuous function f and a point x0 P n, a vector d P n is a descent

direction for f at x0 if, there exists some ✏ “ ✏pf, x0, dq ° 0 such that,

fpx0 ` �dq † fpx0q, @ 0 † � § ✏.

If x0 is a local minimum, there are no descent directions.
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Some pseudocode

The anatomy of essentially every descent method is as follows:
1. Begin with an initial guess x0, set n “ 0

2. Identify a descent direction dn at xn

3. Identify a stepsize ↵n ° 0

4. Define xn`1 “ xn ` ↵ndn

5. If xn`1 is good enough, stop. Otherwise set n – n ` 1, return to step 2.
Things in blue are crucial decisions/inputs to the algorithm:

– An initial guess x0

– A strategy for computing a descent direction dn

– A strategy for computing a stepsize ↵n

– A way to determine when an iterate has converged, terminating the algorithm
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Initial guess and termination

Strategies for initial guess and termination criteria are in some sense the easiest to
describe.

Common termination strategies:
– }xn ´ xn´1} † ✏ (Does this imply xn is close to optimal?)
– |fpxnq ´ fpxn´1q| † ✏ (Does this imply fpxnq is close to optimal?)
– }rfpxnq} † ✏ (Does this imply xn is close to stationary?)
– Combinations of the above

Frequently there is not a clear “good” choice.
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Initial guess and termination

Strategies for initial guess and termination criteria are in some sense the easiest to
describe.

Common initialization strategies:
– Start “close” to a local or global minimum
– Repitition: choose several initializations, optimize for all of them
– Randomization: randomly choose x0

– Homotopy: Let fm, m ° 0 be some sequence of functions such that fm Ñ f

in an appropriate sense.
Choose x0, optimize f1 resulting in optimum rx1.
Set x0 “ rx1, optimize f2 resulting in optimum rx2.
...
This is sensible if fm for small m is easier to optimize than f .
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Initial guess and termination

Strategies for initial guess and termination criteria are in some sense the easiest to
describe.

Deciding on a descent direction and stepsize are typically the meat of developing
good optimization algorithms.
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The “classical” stuff
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Descent directions

xk`1 “ xk ` ↵kdk.

We assume dk is a descent direction, and for smooth f this is the same as,

d
T
k rfpxkq † 0.

Nearly all descent algorithms use an update direction given by,

dk “ ´G
´1
k rfpxkq,

where Gk is some symmetric, positive-definite matrix.
(Note this condition on Gk guarantees dk is a diescent direction.)
For example:

– Steepest/Gradient descent: Gk “ I

– Newton’s method: Gk “ r2
fpxkq

– quasi-Newton methods: Gk « r2
fpxkq
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Steepest/gradient descent

xk`1 “ xk ` ↵kdk.

The direction dk is chosen to infinitesimally decrease f the fastest:

dk “ ´rfpxkq.

Note that steepest descent need not be a good idea.
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Steepest descent is first-order

xk`1 “ xk ´ ↵krfpxkq

Steepest descent can be understood as a first-order Taylor expansion. First
approximate:

fpxq « fpxkq ` px ´ xkqTrfpxkq,

and choose x so that px ´ xkqTrfpxkq is minimized for fixed }x ´ xk}:

dk “ x ´ xk “ ´rfpxkq
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Scaling

One reason why steepest descent tends to produce poor iterates is because
problems can be poorly scaled.

Consider

fpxq “ x
T

ˆ
10 0
0 1

˙
x.

The global minimum is x “ 0, but starting at x “ p0.5, 1q produces pretty bad
descent directions.

Steepest descent is not scale invariant.

A simple strategy to mitigate poor scaling is diagonal scaling:

min fpxq ›Ñ min gpxq,

where gpxq “ fpDxq, with D a positive-definite diagonal matrix.

The hard part is computing D (which can change at every iteration).
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Newton’s method

There are two equivalent ways to derive Newton’s method.

For simplicity, we’ll assume r2
fpxkq ° 0.
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Newton’s method

There are two equivalent ways to derive Newton’s method.

For simplicity, we’ll assume r2
fpxkq ° 0.

The first derivation: approximate f with a second-order Taylor expansion and
minimize:

fpxq « fpxkq ` drfpxkq ` 1
2
d
Tr2

fpxkqd, d “ x ´ xk.
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Newton’s method

There are two equivalent ways to derive Newton’s method.

For simplicity, we’ll assume r2
fpxkq ° 0.

The first derivation: approximate f with a second-order Taylor expansion and
minimize:

fpxq « fpxkq ` drfpxkq ` 1
2
d
Tr2

fpxkqd, d “ x ´ xk.

The right-hand side is a strictly convex function of d, so can be exactly minimized:

d “ ´ `
r2

fpxkq˘´1 rfpxkq.

Note that this relies on positive-definiteness of the Hessian, suggesting that this is
only a good idea if f is locally convex around xk....
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Newton’s method

There are two equivalent ways to derive Newton’s method.

For simplicity, we’ll assume r2
fpxkq ° 0.

The second derivation: Let’s use Newton’s method for nonlinear root-finding to
compute stationary points.

Define,

gpxq :“ rfpxq ›Ñ Solve for x : gpxq “ 0

Note that g : n Ñ n.
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Newton’s method

There are two equivalent ways to derive Newton’s method.

For simplicity, we’ll assume r2
fpxkq ° 0.

The second derivation: Let’s use Newton’s method for nonlinear root-finding to
compute stationary points.

Define,

gpxq :“ rfpxq ›Ñ Solve for x : gpxq “ 0

Note that g : n Ñ n.

Given a current iterate xk, Newton’s method for rootfinding for g:

xk`1 “ xk ´ prgpxkqq´1
gpxkq.

The quantity rg is a Jacobian matrix, with entries,

rgpxq “
ˆ B

Bx1
rfpxq B

Bx2
rfpxq ¨ ¨ ¨ B

Bxn
rfpxq

˙
“ r2

fpxq,

so that we have

xk`1 “ xk ´ `
r2

fpxkq˘´1 rfpxkq ùñ xk`1 ´ xk “ ´ `
r2

fpxkq˘´1 rfpxkq.

A. Narayan (U. Utah – Math/SCI) Descent algorithms, I



Newton’s method and scaling

Note that Newton’s method exactly minimizes positive-definite quadratic functions
in a single step.

In particular, even poorly scaled quadratic functions are exactly minimized.

For this reason, Newton-type methods are called scale invariant.

Naturally there is a price to pay: computing r2
f is much more expensive than rf .
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Stepsizes

We’ll now discuss choosing stepsizes. Our update takes the form,

xk`1 “ xk ` ↵kdk.

We will always consider dk to be a descent direction.

For notational simplicity, we’ll assume k is fixed, and remove dependence of ↵k, dk

on k. I.e., we have,

xk`1 “ xk ` ↵d.

Note: ↵ and d typically always depend on k!

Let’s assume d is chosen and fixed (as a descent direction).

What are some common ways that ↵ is chosen?
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Exact linesearch

The simplest approach is, unfortunately, the least practical.

Exact linesearch determines ↵ through an optimization,

↵ “ argmin
�°0

fpxk ` �dq.

Things to note:
– The above problem is guaranteed to have a solution since d is a descent

direction.
– This optimization is in principle much easier than the original problem: the

above is a one-dimensional optimization instead of an n-dimensional one.
– This is still quite an expensive problem since several evaluations of f (and

probably rf are required)
Most popular approaches are inexact linesearch methods, based on various
conditions.
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Sufficient decrease

A particularly simple inexact method is that of sufficient decrease.

Locally near xk, the function f behaves like its linear Taylor series,

fpxk ` ↵dq « fpxkq ` ↵d
Trfpxkq.

This gives us an expected decrease: for a given small ↵, the improvement in f is
approximately,

fpxk ` ↵dq ´ fpxkq « ↵d
Trfpxkq.

Of course, unless we get lucky the actual decrease will be smaller than this.

Sufficient decrease, or the Armijo condition, imposes the following condition on ↵:

fpxk ` ↵dq ´ fpxkq § c↵d
Trfpxkq,

for a constant c P p0, 1q. Choosing c is a bit of an art.
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Backtracking

A very popular appraoch combines sufficient decrease with backtracking :
– Fix c, r P p0, 1q. Initialize some “large” ↵ ° 0

– While sufficient decrease is not met, i.e., fpxk `↵dq ´ fpxkq ° c↵d
Trfpxkq:

§ Set ↵ – ↵r

The while loop must terminate if d is a descent direction.
Typically, r “ rk is chosen in a problem-dependent way.
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The Wolfe conditions

One problem with sufficient decrease + backtracking: values ↵ can be very small.

To mitigate small step sizes, we impose a stronger pair of conditions on ↵.

One condition is again sufficient decrease,

fpxk ` ↵dq ´ fpxkq § c↵d
Trfpxkq, (1a)

the second is the additional condition:

d
Trfpxk ` ↵dq • c̃d

Trfpxkq. (1b)

for some other constant c̃ P pc, 1q. The pair (1) are the Wolfe conditions.

The second, “curvature” Wolfe condition states that the one-dimensional function
↵ fiÑ fpxk ` ↵dq is less steep at xk`1 compared to xk.

If this less steep condition fails for small ↵, it suggests that making ↵ larger can
significantly decrease the objective.
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Strong Wolfe conditions
34 C H A P T E R 3 . L I N E S E A R C H M E T H O D S

desired
slope

k )φ (α) =f(xk+α p
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α

acceptableacceptable

Figure 3.4 The curvature condition.

is strongly negative, we have an indication that we can reduce f significantly by moving
further along the chosen direction.

On the other hand, if φ′(αk) is only slightly negative or even positive, it is a sign that
we cannot expect much more decrease in f in this direction, so it makes sense to terminate
the line search. The curvature condition is illustrated in Figure 3.4. Typical values of c2 are
0.9 when the search direction pk is chosen by a Newton or quasi-Newton method, and 0.1
when pk is obtained from a nonlinear conjugate gradient method.

The sufficient decrease and curvature conditions are known collectively as the Wolfe
conditions. We illustrate them in Figure 3.5 and restate them here for future reference:

f (xk + αk pk) ≤ f (xk) + c1αk∇ f T
k pk, (3.6a)

∇ f (xk + αk pk)T pk ≥ c2∇ f T
k pk, (3.6b)

with 0 < c1 < c2 < 1.
A step length may satisfy the Wolfe conditions without being particularly close to a

minimizer of φ, as we show in Figure 3.5. We can, however, modify the curvature condition
to force αk to lie in at least a broad neighborhood of a local minimizer or stationary point
of φ. The strong Wolfe conditions require αk to satisfy

f (xk + αk pk) ≤ f (xk) + c1αk∇ f T
k pk, (3.7a)

|∇ f (xk + αk pk)T pk | ≤ c2|∇ f T
k pk |, (3.7b)

with 0 < c1 < c2 < 1. The only difference with the Wolfe conditions is that we no longer
allow the derivative φ′(αk) to be too positive. Hence, we exclude points that are far from
stationary points of φ.

Image: Figure 3.5, Nocedal & Wright, Numerical Optimization

The strong Wolfe conditions strengthen the curvature condition to,
ˇ̌
ˇdTrfpxk ` ↵dq

ˇ̌
ˇ § c̃

ˇ̌
ˇdTrfpxkq

ˇ̌
ˇ

which disallows large positive values of f 1pxk ` ↵dq.

Under mild assumptions on f and xk, there is always some ↵ satisfying the
strong/Wolfe conditions.
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The Goldstein conditions

xk`1 “ xk ` ↵d.

Yet another set of conditions are the Goldstein conditions on ↵:

fpxkq ` p1 ´ cq↵dTrfpxkq § fpxk ` ↵dq § fpxkq ` c↵d
Trfpxkq, 0 † c † 1

2
.

Again, the goal is to mitigate small step sizes, but this can be too aggressive.

36 C H A P T E R 3 . L I N E S E A R C H M E T H O D S

the term in the left-hand side of (3.10) is negative, the strong Wolfe conditions (3.7) hold in
the same interval. �

The Wolfe conditions are scale-invariant in a broad sense: Multiplying the objective
function by a constant or making an affine change of variables does not alter them. They can
be used in most line search methods, and are particularly important in the implementation
of quasi-Newton methods, as we see in Chapter 6.

THE GOLDSTEIN CONDITIONS

Like the Wolfe conditions, the Goldstein conditions ensure that the step length α

achieves sufficient decrease but is not too short. The Goldstein conditions can also be stated
as a pair of inequalities, in the following way:

f (xk) + (1 − c)αk∇ f T
k pk ≤ f (xk + αk pk) ≤ f (xk) + cαk∇ f T

k pk, (3.11)

with 0 < c < 1/2. The second inequality is the sufficient decrease condition (3.4), whereas
the first inequality is introduced to control the step length from below; see Figure 3.6

A disadvantage of the Goldstein conditions vis-à-vis the Wolfe conditions is that the
first inequality in (3.11) may exclude all minimizers of φ. However, the Goldstein and Wolfe
conditions have much in common, and their convergence theories are quite similar. The
Goldstein conditions are often used in Newton-type methods but are not well suited for
quasi-Newton methods that maintain a positive definite Hessian approximation.

fk
Tpkcα

Tpkkα (1_ c) f

φ ( = f(x k+α pα ) k )

acceptable steplengths

α

Figure 3.6 The Goldstein conditions.Image: Figure 3.6, Nocedal & Wright, Numerical Optimization
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Convergence

The goal of descent algorithms is to compute a stationary point.
(Asking for more without extra conditions is unreasonable.)

A method is globally convergent if we can guarantee:

lim
kÒ8

}rfpxkq}2 “ 0.

To discuss convergence we rely on a measure of how parallel our chosen descent
direction dk is to rfpxkq at each step:

cos ✓k :“ ´d
T
k rfpxkq

}dk}}rfpxkq} .

One of the basic tools in convergence theory of descent methods is the Zoutendijk
condition, stating that

lim
kÑ8

cos2 ✓k}rfpxkq}2 † 8.
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Zoutendijk to convergence

8ÿ

k“1

cos2 ✓k}rfpxkq}2 † 8.

Why is this useful? We can convert this into global convergence if,

| cos ✓k| • � ° 0, k P

for some �.

Then this implies:

8ÿ

k“1

}rfpxkq}2 † 8 ùñ lim
kÒ8

}rfpxkq} “ 0,

i.e., global convergence.
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