Math 6880/7875: Advanced Optimization
Descent algorithms, Part |

Akil Narayan®

1Department of Mathematics, and Scientific Computing and Imaging (SCI) Institute
University of Utah

Feburary 8, 2022

7S
U SIIE\IIVE RSITY ;@ék

OF UTAH www.sci.utah.edu

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Descent algorithms

A foundational computational algorithmic idea for unconstrained + smooth
optimization is a descent method.

Many optimization tools are variants of descent methods. We'll tour such methods.
— The basic descent method
— First- and second-order methods
— Convergence guarantees

— quasi-Newton methods

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

The descent method

(ﬂswm £ 1S tmpyzh)

Consider the unconstrained optimization,

min f(z)

When we cannot solve this analytically, algorithms are our recourse.

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

The descent method

Consider the unconstrained optimization,

min f(z)

When we cannot solve this analytically, algorithms are our recourse.

Most optimization algorithms are iterative, meaning that an initial guess is
repeatedly improved.

The most common method for performing the “improvement” is to geometrically
travel in a descent direction.

Definition

Given a continuous function f and a point xo € R"™, a vector d € IR" is a descent
direction for f at x¢ if, there exists some € = €(f, xo,d) > 0 such that,

f(xo + d0d) < f(xo), V0O<d<e.

If o is a local minimum, there are no descent directions.

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Some pseudocode
re 9y

all 184N ees oﬁ n Aﬁhlul
ne foencidn oF X) k: theratimn ndeox

The anatomy of essentially every descent method is as follows:
1. Begin with an initial guess zo, set p=10 [=()

|dentify a descent direction d,, at =,

|dentify a stepsize a,, > 0

Define xp11 = xn + andn

ok WD

If 2,1 is good enough, stop. Otherwise set n < n + 1, return to step 2.

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Some pseudocode

The anatomy of essentially every descent method is as follows:

1. Begin with an initial guess zg, set n =0

2. ldentify a descent direction d,, at x,

3. ldentify a stepsize o, > 0

4. Define £p11 = Tn + andn

5. If 41 is good enough, stop. Otherwise set n < n + 1, return to step 2.
Things in blue are crucial decisions/inputs to the algorithm:

— An initial guess xg

— A strategy for computing a descent direction d,,

— A strategy for computing a stepsize o,

— A way to determine when an iterate has converged, terminating the algorithm

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

n

Initial guess and termination "W "

Strategies for initial guess and termination criteria are in some sense the easiest to
describe.

Common termination strategies:
— ||z, — zn—1| < € (Does this imply x,, is close to optimal?)
— |f(xn) — f(zn=1)| < € (Does this imply f(x,) is close to optimal?)
— [V f(zn)|| < € (Does this imply x,, is close to stationary?)

— Combinations of the above

Frequently there is not a clear “good’ choice.

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Initial guess and termination

Strategies for initial guess and termination criteria are in some sense the easiest to

describe.

Common initialization strategies:
— Start “close” to a local or global minimum

— Repitition: choose several initializations, optimize for all of them

— Randomization: randomly choose xq

va[M

glo&a \
'\

Al

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Initial guess and termination

Strategies for initial guess and termination criteria are in some sense the easiest to
describe.

Deciding on a descent direction and stepsize are typically the meat of developing
good optimization algorithms.

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

The “classical’ stuff

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Descent directions

Tkl = Tk + apdp.
We assume dj is a descent direction, and for smooth f this is the same as,

di, V f(zi) < 0.

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Descent directions

Tht1l = Tk + Qrdg.
We assume dj is a descent direction, and for smooth f this is the same as,
T

Nearly all descent algorithms use an update direction given by,
_ T T - T/ "!
di = —Gk1Vf($k;), \/WC(X,() J’C- &DF‘/XK) &{é

where (G, is some symmetric, positive-definite matrix. VF[K{C)
(Note this condition on G guarantees dj, is a diescent direction.)
For example: LD

— Steepest/Gradient descent: Gy, = [
— Newton's method: G = sz(xk)
— quasi-Newton methods: G ~ VQf(xk)

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Steepest/gradient descent

Tkl = Tk + ard.

The direction dj is chosen to infinitesimally decrease f the fastest:

dk = —Vf(a:k)

(&,(SI on f'”?'/' \f//le.)

"Chesy" A is ol
fa (m'gu{-&

0.5

A. Narayan (U. Utah — Math/SCl)

Descent algorithms, |

Steepest/gradient descent

Tht1 = Tk + Qrd.
The direction dji is chosen to infinitesimally decrease f the fastest:
dk = —Vf(:ck)

Note that steepest descent need not be a good idea.

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Steepest descent is first-order

a‘er(l J(:kk
Steepest descent can be understood as a first-order Taylor expansion. First
approximate:

LTk+1 — Tk — Oék;Vf(ZL'k)

f(@) ~ f(zn) + (@ —z1)" V[(20),
and choose x so that (z — 2x)’ Vf(x) is minimized for fixed ||z — z|:

sdy =3 —a = =V f(xr)

A. Narayan (U. Utah — Math/SCl) (\ Descent algorithms, |

Scaling

One reason why steepest descent tends to produce poor iterates is because
problems can be poorly scaled.

f(a:):a:T(P):c

The global minimum is x = 0, but starting at = (0.5, 1) produces pretty bad
descent directions.

Consider

Steepest descent is not scale invariant.

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Scaling

One reason why steepest descent tends to produce poor iterates is because
problems can be poorly scaled.

f(a:):a:T(P):c

The global minimum is x = 0, but starting at = (0.5, 1) produces pretty bad
descent directions.

Consider

Steepest descent is not scale invariant.

A simple strategy to mitigate poor scaling is diagonal scaling:
min f(x) — ming(x),

where g(x) = f(Dx), with D a positive-definite diagonal matrix.

The hard part is computing D (which can change at every iteration).

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

z@i 1t o§< D @%&%@f

D= bl B by (7))

/

YAy = @u ZML

(U

S

24 Hesgian \7%6)
RIS La@ (7(x,)
%@2%?& N o s

Newton's method
There are two equivalent ways to derive Newton's method.

For simplicity, we'll assume V? f(z1) > 0.

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Newton's method
There are two equivalent ways to derive Newton's method.
For simplicity, we'll assume V? f(z1) > 0.

The first derivation: approximate f with a second-order Taylor expansion and
minimize:

f(x) ~ f(xx) + cg%f(xk) + %dTV2f(xk)d, d=x— .

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Newton's method
There are two equivalent ways to derive Newton's method.
For simplicity, we'll assume V? f(z1) > 0.

The first derivation: approximate f with a second-order Taylor expansion and
minimize:

1
flx) ~ f(xr) + dV f(xr) + idTV2f(xk)d, d=x — xk.
The right-hand side is a strictly convex function of d, so can be exactly minimized:

4= - (V> f(zx)) " VF(xe).

Note that this relies on positive-definiteness of the Hessian, suggesting that this is
only a good idea if f is locally convex around xy....

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Newton's method
There are two equivalent ways to derive Newton's method.
For simplicity, we'll assume V? f(z1) > 0.

The second derivation: Let's use Newton's method for nonlinear root-finding to
compute stationary points.

Define,
g(x) =V f(x) — Solveforx: g(x)=0

Note that g : R" — R".

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Newton's method
There are two equivalent ways to derive Newton's method.
For simplicity, we'll assume V? f(z1) > 0.

The second derivation: Let's use Newton's method for nonlinear root-finding to
compute stationary points.

Define,
g(x) =Vf(x) —> Solveforxz: g(x)=0
Note that g : R™ — R".

Given a current iterate xx, Newton's method for rootfinding for«g'f')(
al

i1 = 2k — (Vg(zr)) g(zr).

The quantity Vg is a Jacobian matrix, with entries,

Vo(x) = (ivm«) 2 Vi) - iwm) -V f(a),

&xl 8332 awn
so that we have

i = xx — (Vf(ar) VFier) = are —zn = — (V2f(zr) " V().

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Newton's method and scaling

Note that Newton's method exactly minimizes positive-definite quadratic functions
in a single step.

In particular, even poorly scaled quadratic functions are exactly minimized.

For this reason, Newton-type methods are called scale invariant.

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Newton's method and scaling

Note that Newton's method exactly minimizes positive-definite quadratic functions
in a single step.

In particular, even poorly scaled quadratic functions are exactly minimized.
For this reason, Newton-type methods are called scale invariant.

Naturally there is a price to pay: computing V* f is much more expensive than V f.

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Stepsizes

We'll now discuss choosing stepsizes. Our update takes the form,
Tha1 = Tk + apdg.
We will always consider dj. to be a descent direction.

For notational simplicity, we'll assume k is fixed, and remove dependence of ay, dx
on k. l.e., we have,

Tkl = Tk + ad.

Note: « and d typically always depend on k!

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Stepsizes

We'll now discuss choosing stepsizes. Our update takes the form,
Tha1 = Tk + apdg.
We will always consider dj. to be a descent direction.

For notational simplicity, we'll assume k is fixed, and remove dependence of ay, dx
on k. l.e., we have,

Tkl = Tk + ad.
Note: « and d typically always depend on k!
Let's assume d is chosen and fixed (as a descent direction).

What are some common ways that « is chosen?

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Exact linesearch

~
S
.
~
Y

The simplest approach is, unfortunately, the least practical. /
£ d
Exact linesearch determines o through an optimization, «

a = argmin f(xr + 6d).
B8>0
Things to note:

— The above problem is guaranteed to have a solution since d is a descent
direction.

— This optimization is in principle much easier than the original problem: the
above is a one-dimensional optimization instead of an n-dimensional one.

— This is still quite an expensive problem since several evaluations of f {and~
are requi

Most popular approaches are inexact linesearch methods, based on various
conditions.

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Sufficient decrease

A particularly simple inexact method is that of sufficient decrease.
Locally near xg, the function f behaves like its linear Taylor series,
flzr + ad) ~ f(zk) + ad’ Vf(zw).

This gives us an expected decrease: for a given small «, the improvement in f is
approximately,

f(zr + ad) — f(zr) ~ ad’ Vf(zr).

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Sufficient decrease

A particularly simple inexact method is that of sufficient decrease.
Locally near xg, the function f behaves like its linear Taylor series,
flzr + ad) ~ f(zk) + ad’ Vf(zw).

This gives us an expected decrease: for a given small «, the improvement in f is
approximately,

flxr + ad) — f(xr) ~ oszVf(a:k).
Of course, unless we get lucky the actual decrease will be smaller than this.
Sufficient decrease, or the Armijo condition, imposes the following condition on «:
f(zk + ad) — f(zx) < cad” Vf(zk),

for a constant c € (0,1). Choosing c is a bit of an art.

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Backtracking
£

Ar

olr?
a4 r3

/

A very popular appraoch combines sufficient decrease with backtracking:
— Fix ¢,r € (0,1). Initialize some “large” a > 0
— While sufficient decrease is not met, i.e., f(xx + ad) — f(z1) > cad’ V f(xy):
> Set @ «— ar

The while loop must terminate if d is a descent direction.
Typically, 7 = r is chosen in a problem-dependent way.

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

The Wolfe conditions

One problem with sufficient decrease + backtracking: values o can be very small.
To mitigate small step sizes, we impose a stronger pair of conditions on «.
One condition is again sufficient decrease,
flzr + ad) — f(zr) < cad’ Vf(zw), (1a)
the second is the additional condition:
A"V f(zr + ad) = éd"'Vf(zr). (1b)

for some other constant ¢ € (¢, 1). The pair (1) are the Wolfe conditions.

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

The Wolfe conditions

One problem with sufficient decrease + backtracking: values o can be very small.
To mitigate small step sizes, we impose a stronger pair of conditions on «.
One condition is again sufficient decrease,

f(xr + ad) — f(zr) < cad” V f(zx),
the second is the additional condition:

A"V f(zr + ad) = éd"'Vf(zr).

for some other constant ¢ € (¢, 1). The pair (1) are the Wolfe conditions.

The second, “curvature” Wolfe condition states that the one-dimensional function
a — f(xr + ad) is less steep at x4+1 compared to .

If this less steep condition fails for small «, it suggests that making « larger can
significantly decrease the objective.

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Strong Wolfe conditions

tangent

d(a) :f(xk"'apk)

1" 7fl,) ~
L deira

%\

/

NNy N

acceptable acceptable

Image: Figure 3.5, Nocedal & Wright, Numerical Optimization

A. Narayan

(U. Utah — Math/SClI)

Descent algorithms, |

Strong Wolfe conditions

tangent

d(a) =f(xk+apk)

Ak\/ desired
slope

acceptable acceptable

Image:

The strong Wolfe conditions strengthen the curvature condition to,

Figure 3.5, Nocedal & Wright, Numerical Optimization

4TV f(zn + ad)‘ <é

dTVf(ﬂ?k)‘

which disallows large positive values of f'(zx + ad).

Under mild assumptions on f and xg, there is always some « satisfying the

strong/Wolfe conditions.

A. Narayan

(U. Utah — Math/scl)

Descent algorithms, |

The Goldstein conditions

Tkl = Tk + ad.

Yet another set of conditions are the Goldstein conditions on «:

Flzr) + (1=)ad™V Fzx) < Fze + ad) < fzx) + cadTVF(ze), 0<c< %

Again, the goal is to mitigate small step sizes, but this can be too aggressive.

o (o) =f(xk+0€Pk)

acceptable steplengths

Image: Figure 3.6, Nocedal & Wright, Numerical Optimization

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Convergence

The goal of descent algorithms is to compute a stationary point.
(Asking for more without extra conditions is unreasonable.)

A method is globally convergent if we can guarantee:

lim V£ (@)1, = 0

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Convergence

The goal of descent algorithms is to compute a stationary point.
(Asking for more without extra conditions is unreasonable.)

A method is globally convergent if we can guarantee:

lim V£ (@)1, = 0

To discuss convergence we rely on a measure of how parallel our chosen descent
direction dj, is to V f(xy) at each step:

-t
_ —dy Vf(x) /"
SO = N f@ Y

One of the basic tools in convergence theory of descent methods is the Zoutendijk

condition, stating that S
K<

/IX cos” 01|V f(zp)||* < oo.
o0

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

Zoutendijk to convergence

o0

> cos® 0k |V f (k) |? < 0.

k=1

Why is this useful? We can convert this into global convergence if,
|cosOr| = 4§ > 0, kelN
for some 9. (oS 9,(70 = 0. ”‘/2_

A. Narayan (U. Utah — Math/SCl) Descent algorithms, |

