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Examples in optimization

We'll take a short tour of some examples in optimization:
— Machine learning

> Model training to deep learning: Training of model parameters
> Classification: Building of classification models

— Statisics

> Bayesian inference: Updating beliefs with data
> Gaussian Processes: Hyperparameter optimization

— PDE-constrained optimization: Optimization with PDE constraints
— Sparse approximation: Compressed sensing and matrix completion

- Stochasti . Ontirmizati I .
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PDE-constrained optimization

PDE-constrained optimization is an instance of an optimal control problem:

— A system is governed by a PDE, whose solution we wish to behave in a certain
way.

— We cannot directly control the solution, but instead can control an input to
the PDE.

— Optimization proceeds over the joint control /solution state, subject to the
PDE as a constraint.
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PDE-constrained optimization

PDE-constrained optimization is an instance of an optimal control problem:

— A system is governed by a PDE, whose solution we wish to behave in a certain
way.

— We cannot directly control the solution, but instead can control an input to
the PDE.

— Optimization proceeds over the joint control /solution state, subject to the
PDE as a constraint.

Examples:
— Desired temperature distribution with input heat/boundary control
— Optimize drug delivery, with drug administration the control

— Shape optimization: optimize pressure distribution subject to aerodynamic
shape

A. Narayan (U. Utah — Math/SClI) Optimization examples |



PDE-constrained optimization setup

In a simple setting, PDE-constrained optimization has 3 main ingredients:
— The state variable u, the solution to a PDE (with an input control)
— The control z, an input to a PDE
— The objective function L(u; 2)

Additional constraints on the control may also be imposed.
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PDE-constrained optimization setup

In a simple setting, PDE-constrained optimization has 3 main ingredients:
— The state variable u, the solution to a PDE (with an input control)
— The control z, an input to a PDE
— The objective function L(u; 2)

Additional constraints on the control may also be imposed. The optimization
problem to be solved is frequently of the form:

arg min £(z,u) = S (u ) — slF+ Az

(naghe  Subgrt b 0¢2() 2 ])

— s is some desired/observed solution behavior

with | - | appropriate norm

— &S is an observation operator, mapping PDE solutions to observations
— ||z|| penalizes “complex” behavior of the control

— u depends on z, implicitly through a PDE — this is a constraint

Glternatie * Gy min Hg(u(z))—glﬁi M= 10*
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A simple example
Optimize heat forcing to achieve desired temperature distribution.

Au=f, in

U‘aQ =d

— u is the PDE solution state

— f is the control

— d is given data, known behavior of u at the boundary
— We are given a target temperature distribution

The optimization problem reads, was )

mi}p lu —us|® + p|f|* subject to Au = f,

for appropriate norms.
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A simple example

Optimize heat forcing to achieve desired temperature distribution.

Au=f, in

u‘ag =d

— u is the PDE solution state

— f is the control

— d is given data, known behavior of u at the boundary
— We are given a target temperature distribution

The optimization problem reads,

mi}p lu — us|® + p|f||* subject to Au = f,

for appropriate norms. In such problems, there are two broad strategies:
— Optimize then discretize — derive optimality conditions and discretize them

— Discretize then optimize — discretize the PDE first, then derive
(finite-dimensional) optimality conditions

These are not the same!
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PDE discretization

It's typically easier to discretize then optimize:

Au=f — Su-=f,

— u, f are vector discretizations of u, f
— S is the discretization of A

1
mi;l 5 |u — g —I—Yf\\g subject to Su = f.
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The KKT conditions

Optimality conditions: stationarity of the Lagrangian.

1

L(’U,,f,)\) = 5

[u—wiliy + S1F130 + AT (Su—$),

where |z|3s = &’ Mz is the finite-dimensional norm defined by discretization.

Stationarity of the Lagrangian requires:

(%) M(u—ug) +S"A=0
2 UMF — A =0

oF)
(%) Su—f=0

Solving this equation yields stationary points.

This problem is frequently very large and expensive to solve.
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Formulations [;)

V

M o0 ST Muy
0 uM —I |= 0
S I 0 0

There are typically two strategies to proceed:

The “primal-dual’ approaches solves the above system directly:
— Is a very large linear system: typically system is not formed directly

— lterative methods are used: efficient/accurate preconditioners are required
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Formulations

M o0 ST Muy
0 uM —I |= 0
S I 0 0

There are typically two strategies to proceed:

The “dual” approach first isolates the dual variables (\):

(lM + SM—lsT) A = Sus,
[
and subsequently uses them to solve for the primal variables f,w:
f = lM—lx, u=uy — M 'S
L

This requires typically 3 linear algebra solves, and the dual variables equation can
be more difficult to invert.
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Heat equation results
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Image: Block-triangular preconditioners for PDE-constrained optimization, Rees & Stoll, 2010

Left: control  Right: state

(The computed state u and target w4 are visually indistinguishable.)
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Odds and ends

For a general PDE P(z)u = 0,

min [Su — d|* + pz]?

— If P is a nonlinear PDE (in either z or u), the stationarity conditions become
more difficult to compute
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Odds and ends

For a general PDE P(z)u = 0,

min [Su — d|* + pz]?

— If P is a nonlinear PDE (in either z or u), the stationarity conditions become
more difficult to compute

— The KKT conditions are nonlinear equations: iterative methods for nonlinear
systems used

— The KKT conditions already contain first-order derivatives: gradients for
iterative methods involve second derivatives
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Odds and ends

For a general PDE P(z)u = 0,

min [Su — d|* + pz]?

— If P is a nonlinear PDE (in either z or u), the stationarity conditions become
more difficult to compute

— The KKT conditions are nonlinear equations: iterative methods for nonlinear
systems used

— The KKT conditions already contain first-order derivatives: gradients for
iterative methods involve second derivatives

— These are only necessary optimality conditions in general
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Odds and ends

For a general PDE P(z)u = 0,

min [Su — d|* + pz]?

— If P is a nonlinear PDE (in either z or u), the stationarity conditions become
more difficult to compute

— The KKT conditions are nonlinear equations: iterative methods for nonlinear
systems used

— The KKT conditions already contain first-order derivatives: gradients for
iterative methods involve second derivatives

— These are only necessary optimality conditions in general

— If problems are time-dependent, the discretization size frequently is multiplied
by the number of time steps
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But this works in many cases

Goal: design an airfoil from a parametric class whose steady-state pressure
distribution matches a desired target.

PDE model: compressible 3D Euler equations (nonlinear, hyperbolic,
time-dependent)

(h) p(8) = 0.1

Control: 8-dimensional parameter defining wing shape
State: Pressure (with given target data), which is derived from PDE solution
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But this works in many cases
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(a) CFD mesh for the Cub-RAE2822 airfoil

(b) Pressure field (Moo = 0.5, a = 0.0°)
Image: Progressive construction of a parametric reduced-order model for PDE-constrained optimization, Zahr & Farhat,

2015
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Sparse recovery and compressed sensing

Compressed or compressive sampling is a decoding strategy to identify a signal
from a small number of measurements.

The basic idea is understandable from Nyquist-Shannon sampling concepts:

Sampling at twice the maximum frequency is necessary and sufficient for general
signal recovery

Image: Wikipedia

l.e., it is generally not possible to uniquely recover signals from fewer equispaced
measurements.
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Encoding and decoding

In the simplest setting, signals are fully represented by a finite-dimensional vector of
Fourier Series coefficients:

N
ce R*"™ —  z(t)=co+ Z cj cos(2mjt) + cj+n sin(2mjt).
j=1
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Encoding and decoding

In the simplest setting, signals are fully represented by a finite-dimensional vector of
Fourier Series coefficients:

N
ce R*"™ —  z(t)=co+ Z cj cos(2mjt) + cj+n sin(2mjt).
j=1

The process of encoding is transformation of ¢ into a new, typically compressed,
representation, e.g.,

C—>w=($1,...,:13M)T, xm:x(tm)a

for some sampling times t,,.
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Encoding and decoding

In the simplest setting, signals are fully represented by a finite-dimensional vector of
Fourier Series coefficients:

N
ce R*"™ —  z(t)=co+ Z cj cos(2mjt) + cj+n sin(2mjt).
j=1

The process of encoding is transformation of ¢ into a new, typically compressed,
representation, e.g.,

T
c—x=(T1,...,TMm) , T = (tm),
for some sampling times t,,.

Decoding is the process of transforming the encoded representation back into ¢
(hopefully without error).

The simplest form of encoding-decoding is temporal sampling (and its
corresponding decoding).

A. Narayan (U. Utah — Math/SClI) Optimization examples |



Decoding under Nyquist-Shannon conditions

c Encoding — (Zl?(tl), o ,x(tM))T, Decoding r

According to Shannon-Nyquist if the sampling t; is equispaced and M /2 > F,
where F' is the maximum frequency in the signal, then this process is exact.
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Decoding under Nyquist-Shannon conditions

c Encoding — (Zl?(tl), o ,x(tM))T, Decoding r

According to Shannon-Nyquist if the sampling t; is equispaced and M /2 > F,
where F' is the maximum frequency in the signal, then this process is exact.

But we're greedy: this requires 2F samples, which is expensive if I is large. Can
we do better?

In general, no, without suffering lossy decoding.
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Linear decoding

One way to observe the Shannon-Nyquist rate condition is writing this as a linear
problem:

Ac =z,
(A)m,j = cos(2mjtm), j <N,
(A)m,; = sin(27jt,y,), j > N.

If M > 2N + 1 and is equispaced over [0, 1), there is a unique solution for c.
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Linear decoding

One way to observe the Shannon-Nyquist rate condition is writing this as a linear
problem:

Ac==z,= Ac, (For o exuet X, )
(A)m,; = cos(2mjtm), j <N,
(A)m,; = sin(27jt,y,), j > N.

If M > 2N + 1 and is equispaced over [0, 1), there is a unique solution for c.

If M < 2N + 1, we violate Shannon-Nyquist. In this case, ker(A) is nonempty, and
therefore,

c=co+v, v € ker(A),
solves the problem, where ¢y is the original signal.

l.e., there are infinitely many (perfectly reasonble) solutions — unique decoding is
not possible.

A. Narayan (U. Utah — Math/SClI) Optimization examples |



Linear decoding

One way to observe the Shannon-Nyquist rate condition is writing this as a linear
problem:

Ac =z,
(A)m,j = cos(2mjtm), j <N,
(A)m,; = sin(27jt,y,), j > N.

If M > 2N + 1 and is equispaced over [0, 1), there is a unique solution for c.

If M < 2N + 1, we violate Shannon-Nyquist. In this case, ker(A) is nonempty, and
therefore,

c=co+v, v € ker(A),
solves the problem, where ¢y is the original signal.

l.e., there are infinitely many (perfectly reasonble) solutions — unique decoding is
not possible.

In particular, recovery of the unknown original signal ¢ is practically infeasible.

This is essentially as far as we can go with linear decoding.
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Sparsity

Compressed sensing is a nonlinear, optimization-based decoding paradigm.

The argument: assuming extra signal structure allows one to circumvent
Shannon-Nyquist.
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Sparsity

Compressed sensing is a nonlinear, optimization-based decoding paradigm.

The argument: assuming extra signal structure allows one to circumvent
Shannon-Nyquist.

Define
|lc|, :== # of nonzero entries in ¢,
which is not a norm.

Given s € IN, we say c is an s-sparse vector if |c|o < s.
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Sparsity

Compressed sensing is a nonlinear, optimization-based decoding paradigm.

The argument: assuming extra signal structure allows one to circumvent
Shannon-Nyquist.

Define

|lc|, :== # of nonzero entries in ¢,
which is not a norm.
Given s € IN, we say c is an s-sparse vector if |c|o < s.

The high-level idea: if ¢ is s-sparse, there are only s pieces of information, so
probably we can decode with only s pieces of data?

(This is not quite correct since we don’t know the support of ¢, the locations of the
nonzeros.)
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Sparse approximation

This suggests the following optimization problem:

Let ¢ be an unknown s-sparse vector. Assume we have M samples of ¢ in the
vector @, with associated design matrix A.
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Sparse approximation

This suggests the following optimization problem:

Let ¢ be an unknown s-sparse vector. Assume we have M samples of ¢ in the
vector @, with associated design matrix A.

Establishing that a successful decoder is possible leverages the so-called robust
null-space property.

Theorem

If ker(A) contains no 2s-sparse vectors, then there is some decoder that uniquely
recovers c.

Note that this is a condition on what types of measurements A are permissible.

Such decoders are typically not numerically useful.
Wkﬂ? C=c tv ,l/C\ker(/i)
= |l z ol f v

C* csparse
VA e e H o pan-zemg
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Decoding via optimization

One decoder we might consider minimizes sparsity:

min |[¢|o subject to Ac = .
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Decoding via optimization

One decoder we might consider minimizes sparsity:
min |[¢|o subject to Ac = .
This provides a reasonable initial point for investigation.

The major problem with this optimization is implementation: || - ||op is not convex.
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Decoding via optimization

One decoder we might consider minimizes sparsity:
min |[¢|o subject to Ac = .
This provides a reasonable initial point for investigation.

The major problem with this optimization is implementation: || - ||op is not convex.
One might consider a relaxation of this problem, such as
min |c|« subject to Ac = x,

where | * ||« is a more “friendly” function to work with, such as a convex function.
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¢! minimization
The closest convex ¢P-type norm to || - |0 is | - |1. So we could consider the problem:

min |[¢|1 subject to Ac = x.
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¢! minimization
The closest convex ¢P-type norm to || - |0 is | - |1. So we could consider the problem:
min |[¢|1 subject to Ac = x.
It is geometrically plausible that this decodes sparse vectors.

But does it correctly decode them?

e [RZMH

A. Narayan (U. Utah — Math/SCI) Optimization examples |



RIP and decoding

The seminal foundation of compressed sensing is the Restricted Isometry Property
(RIP).

Definition
A matrix A satisfies the (s,d) RIP if

(1= d)lel® < [ Acl® < @ +9)e|’,

for all vectors c that are s-sparse, where | - || is the £ norm.
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RIP and decoding
The seminal foundation of compressed sensing is the Restricted Isometry Property
(RIP).

Definition
A matrix A satisfies the (s,d) RIP if

(1=d)lel” < [Ae]® < (1 + )],
for all vectors c that are s-sparse, where || - | is the £* norm.
This condition on measurements ensures ¢' optimization is sparsity-promoting:

Theorem

Assume cg is s-sparse, and assume the measurement matrix A satisfies the RIP
condition with constants (4s, ). Then the optimization

min ||c|1 subject to Ac = x.

uniquely recovers cy.
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RIP in practice

The RIP condition is actually quite strong, and significantly constrains the type of
permissible measurement matrices.

To mitigate pathological configurations that violate the RIP, randomness is typically
employed.
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RIP in practice

The RIP condition is actually quite strong, and significantly constrains the type of
permissible measurement matrices.

To mitigate pathological configurations that violate the RIP, randomness is typically
employed.

For example, if c € R*N*!, then let F denote the (2N + 1) x (2N + 1) Fourier
measurement matrix.

Let A be formed by randomly selecting M « 2N + 1 rows of F' (with
renormalization of columns).

If M > CS(log N)°, then with high probability A satisfies an RIP condition.

/
S—S/ar[@
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Compressed sensing in practice

By putting all this together, one can investigate the efficacy of compressed sensing
methods.

Compressed sensing with ¢; minimization

Number of random measurements

0 25 50 75 100
Number of nonzeros of xg — C/
=

FIGURE 1.1: Empirical phase transition in compressed sensing. The colormap indicates the empirical
probability that the #; minimization problem (1.1) successfully recovers a sparse vector xo € R'% from the vector
zp = Axp of random linear measurements, where A is a standard normal matrix. The probability of success
increases with brightness from certain failure (black) to certain success (white).

Image: Living on the edge: A geometric theory of phase transitions in convex optimization, Amelunxen et al, 2013

An interesting observation: there are fairly clear phase transitions delineating the
region where recovery happens with probability 1, and where it happens with
probability 0.
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More recent compressed sensing
Recent methods in compressed sensing attempt to solve more difficult problems,
min |c|« subject to Ac = x,

where | - ||« is a “sparsity-promoting” function.

Such problems are non-convex, but can produce better results.

1.00{ &= . Method
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Image: Analysis of the ratio of ¢l and ¢2 norms in compressed sensing, Xu et al, 2021
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Practical compressed sensing

Many methods are robust to noise, solving, e.g.,
min |[c[|; subject to [[Ac— x|, <e.

There are theoretical guarantees ensuring accuracy up to e.
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Practical compressed sensing

Many methods are robust to noise, solving, e.g.,
min |[c[|; subject to [[Ac— x|, <e.

There are theoretical guarantees ensuring accuracy up to e.

Most realistic problems are “approximately sparse” or compressible and not exactly
sparse.

Compressed sensing theory extends to ensuring accurate decoding in these cases.
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Matrix completion

A problem related to compressed sensing and sparse recovery: matrix completion.

Let A an unknown m X n matrix. We have access to a small number of entries:
Ag, S c [m] x [n],

and our goal is reconstruct A as well as possible.

Again, we should not expect this is possible in general without some assumptions
on A.
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Matrix completion examples

The matrix completion problem is inspired by several real-world examples:

— Collaborative filtering — inference about individual preferences from observed
group preference.
This is the “Netflix problem”: how much will someone like a new movie? User
preferences are frequently determined by a small number of considerations,
suggesting low-rank structure.
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Matrix completion examples

The matrix completion problem is inspired by several real-world examples:

— Collaborative filtering — inference about individual preferences from observed
group preference.
This is the “Netflix problem”: how much will someone like a new movie? User
preferences are frequently determined by a small number of considerations,
suggesting low-rank structure.

— Social networks: Abstract “distances” between agents can be measured
sparsely. Can we fill in missing data to identify cliques, social patterns,
emergent behavior, etc?
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Matrix completion examples

The

matrix completion problem is inspired by several real-world examples:

Collaborative filtering — inference about individual preferences from observed
group preference.

This is the “Netflix problem”: how much will someone like a new movie? User
preferences are frequently determined by a small number of considerations,
suggesting low-rank structure.

Social networks: Abstract “distances’ between agents can be measured
sparsely. Can we fill in missing data to identify cliques, social patterns,
emergent behavior, etc?

Remote sensing: A full correlation matrix for incoming EM signals cannot be
measured, but sensors located at certain locations give partial information.
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Low-rank matrix completion ] ( | -~- !

@,

If we can only observe a few entries, it seems plausible that we can exactly recover
low-rank matrices.

Like in the compressed sensing case regarding sparsity, this is not quite true without
additional properties.
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Low-rank matrix completion

If we can only observe a few entries, it seems plausible that we can exactly recover
low-rank matrices.

Like in the compressed sensing case regarding sparsity, this is not quite true without
additional properties.

Given Ag, then as a first step we might consider the optimization,

minrank(B) subject to Bg = Ag.
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Low-rank matrix completion

If we can only observe a few entries, it seems plausible that we can exactly recover
low-rank matrices.

Like in the compressed sensing case regarding sparsity, this is not quite true without
additional properties.

Given Ag, then as a first step we might consider the optimization,
minrank(B) subject to Bg = Ag.
We don’t have good algorithms for this problem. (It's NP hard.)

So like before, let's relax the problem.
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Low-rank matrix completion, Il

A closest convex relaxation to the low-rank constraint is nuclear norm minimization,
min | By subject to Bgs = Asg,

where

IBlyy = Ti(VB*B) = Y 0.(B),

is the nuclear norm of a matrix.
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Low-rank matrix completion, Il

min | Bl subject to Bgs = Asg,

Like in compressed sensing, exact recovery is possible with an optimal number of
samples, subject to some additional assumptions.

Theorem

Define N := max{n, m}, and let A have fixed rank r that is “small”. Assuming the
left- and right-singular vectors of A are not too ‘peaked’, and if,

S| = CNlog” N,

then sampling these |S| samples uniformly at random from A ensures that the
nuclear norm minimization exactly recovers A exactly with high probability.
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