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Examples in optimization

We’ll take a short tour of some examples in optimization:
– Machine learning

§ Model training to deep learning: Training of model parameters

§ Classification: Building of classification models

– Statisics
§ Bayesian inference: Updating beliefs with data

§ Gaussian Processes: Hyperparameter optimization

– PDE-constrained optimization: Optimization with PDE constraints
– Sparse approximation: Compressed sensing and matrix completion
– Stochastic programming: Optimization under uncertainty
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PDE-constrained optimization

PDE-constrained optimization is an instance of an optimal control problem:

– A system is governed by a PDE, whose solution we wish to behave in a certain
way.

– We cannot directly control the solution, but instead can control an input to
the PDE.

– Optimization proceeds over the joint control/solution state, subject to the
PDE as a constraint.

Examples:
– Desired temperature distribution with input heat/boundary control
– Optimize drug delivery, with drug administration the control
– Shape optimization: optimize pressure distribution subject to aerodynamic

shape
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PDE-constrained optimization setup

In a simple setting, PDE-constrained optimization has 3 main ingredients:
– The state variable u, the solution to a PDE (with an input control)
– The control z, an input to a PDE
– The objective function Lpu; zq

Additional constraints on the control may also be imposed. The optimization
problem to be solved is frequently of the form:

arg min
z,u

Lpz, uq “ }Spuq ´ s} ` �}z}

with } ¨ } appropriate norms.
– s is some desired/observed solution behavior
– S is an observation operator, mapping PDE solutions to observations
– }z} penalizes “complex” behavior of the control
– u depends on z, implicitly through a PDE ›Ñ this is a constraint
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A simple example
Optimize heat forcing to achieve desired temperature distribution.

�u “ f, in ⌦

u|B⌦ “ d

– u is the PDE solution state
– f is the control
– d is given data, known behavior of u at the boundary
– We are given a target temperature distribution u˚

The optimization problem reads,

min
u,f

}u ´ u˚}2 ` µ}f}2 subject to �u “ f,

for appropriate norms. In such problems, there are two broad strategies:
– Optimize then discretize – derive optimality conditions and discretize them
– Discretize then optimize – discretize the PDE first, then derive

(finite-dimensional) optimality conditions
These are not the same!
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PDE discretization

It’s typically easier to discretize then optimize:

�u “ f, ùñ Su “ f ,

– u, f are vector discretizations of u, f

– S is the discretization of �

min
u,f

1
2

}u ´ u˚}22 ` µ
} f}22 subject to Su “ f .
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The KKT conditions

Optimality conditions: stationarity of the Lagrangian.

Lpu, f , �q “ 1
2

}u ´ u˚}2M ` µ
2

}f}2M ` �T pSu ´ fq,

where }x}2M :“ xTMx is the finite-dimensional norm defined by discretization.

Stationarity of the Lagrangian requires:

Mpu ´ u˚q ` ST� “ 0

µMf ´ � “ 0

Su ´ f “ 0

Solving this equation yields stationary points.

This problem is frequently very large and expensive to solve.
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Formulations

¨

˝
M 0 ST

0 µM ´I
S ´I 0

˛

‚“
¨

˝
Mu˚

0
0

˛

‚

There are typically two strategies to proceed:

The “primal-dual” approaches solves the above system directly:
– Is a very large linear system: typically system is not formed directly
– Iterative methods are used: efficient/accurate preconditioners are required
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Formulations

¨

˝
M 0 ST

0 µM ´I
S ´I 0

˛

‚“
¨

˝
Mu˚

0
0

˛

‚

There are typically two strategies to proceed:

The “dual” approach first isolates the dual variables (�):
ˆ

1
µ

M ` SM´1ST

˙
� “ Su˚,

and subsequently uses them to solve for the primal variables f , u:

f “ 1
µ

M´1�, u “ u˚ ´ M´1S�

This requires typically 3 linear algebra solves, and the dual variables equation can
be more difficult to invert.
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Heat equation results
14 R.ST

i.e. ȳ is bi- or tri-quadratic (depending on whether m = 2 or 3) with a peak of unit height at
the origin and is zero outside [0, 1

2 ]m. Note that we set f � 0 here.
We discretize the problem using square Q1 finite elements, and in our preconditioner we

approximate M by 10 steps of the Chebyshev semi-iteration and K by one or two V-cycles of
the HSL package HSL MI20 [29] (via a Matlab interface). We choose � = 0.9 as the scaling
parameter – this guarantees positive definiteness of H in (11). To get a fair comparison we use
the stopping criterion �rk�2/�r0�2 � tol for both methods, which is di�erent to the norms in
which both methods naturally converge.
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Figure 3. Control for � = 1e � 2

Numerical Experiments

The numerical results shown in Tables III to X indicate that the Bramble-Pasciak cg
shows mesh-independent convergence when only one V-cycle of the AMG preconditioner is
applied. This is in contrast to minres for this problem which needs 2 V-cycles to show mesh
independence convergence behavior, even when using the correct norm as a convergence test
(see [10]). We note that in every case shown the Bramble-Pasciak cg had fewer iterations than
minres applied to the same problem. Recall, the cost of one step of the Bramble-Pasciak
cg and one step of the block diagonally preconditioned minres are essentially the same
concerning the number of applications of the preconditioners A0, A1 and S0. Additionally,
the Bramble-Pasciak cg requires the evaluation of the inner products with H which makes an
iteration step more expensive. This is one reason why the timings for minres and the Bramble-
Pasciak cg do not di�er as much as the iteration numbers indicate. On the other hand, we
expect the timings to better reflect the di�erence between minres and the Bramble-Pasciak
cg when both methods are implemented in a low level language. At the moment the AMG
preconditioner relies on a fast FORTRAN implementation with the whole algorithm including
the matrix multiplication being implemented in MATLAB. A low level implementation of

Copyright c� 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0–0
Prepared using nlaauth.cls
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both methods allows for problems of much larger dimensions to be solved in which case the
multiplication with the system matrix becomes increasingly expensive. This means the extra
iterations minres needs for convergence will e�ect the timings more significantly.

Bramble Pasciak MINRES

tol=1e-4 tol=1e-8 tol=1e-4 tol=1e-8
N its time its time its time its time

2 7 0.019 11 0.030 7 0.021 12 0.033
3 8 0.033 12 0.050 7 0.027 15 0.054
4 8 0.086 13 0.142 10 0.077 16 0.120
5 8 0.317 13 0.517 9 0.230 18 0.454
6 8 1.474 13 2.405 13 1.418 21 2.215
7 10 7.701 15 11.625 15 6.850 24 10.647
8 11 35.838 17 55.866 17 32.617 28 52.366
9 7 103.490 11 164.655 33 290.333 47 433.174

Table III. 2D, � = 1e � 2, 1 V-cycle (AMG),10 steps Chebyshev semi-iteration

6. Conclusions

In this paper we have shown that the Bramble-Pasciak cg is a method well suited for
problems from PDE constrained optimization. The drawback of parameter estimation to ensure
a positive definite non-standard inner product, typically identified with this method, can be

Copyright c� 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0–0
Prepared using nlaauth.cls

Image: Block-triangular preconditioners for PDE-constrained optimization, Rees & Stoll, 2010

Left: control Right: state

(The computed state u and target u˚ are visually indistinguishable.)
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Odds and ends

For a general PDE Ppzqu “ 0,

min
u,z

}Su ´ d}2 ` µ }z}2

– If P is a nonlinear PDE (in either z or u), the stationarity conditions become
more difficult to compute

– The KKT conditions are nonlinear equations: iterative methods for nonlinear
systems used

– The KKT conditions already contain first-order derivatives: gradients for
iterative methods involve second derivatives

– These are only necessary optimality conditions in general
– If problems are time-dependent, the discretization size frequently is multiplied

by the number of time steps
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But this works in many cases

Goal: design an airfoil from a parametric class whose steady-state pressure
distribution matches a desired target.

PDE model: compressible 3D Euler equations (nonlinear, hyperbolic,
time-dependent)

by constraining one of the displacement variables to zero. Furthermore, because the control nodes
are allowed to move only in the vertical direction, rigid rotations are automatically eliminated.

A visualization of the vertices of the design element and the deformation induced by perturbing
each design variable is given in Figure 1. While SDESIGN is used to deform the surface nodes
of the airfoil, a robust mesh motion algorithm based on a structural analogy is used to deform the
surrounding body-fitted CFD mesh accordingly.

(a) µ(1) = 0.1 (b) µ(2) = 0.1

(c) µ(3) = 0.1 (d) µ(4) = 0.1

(e) µ(5) = 0.1 (f) µ(6) = 0.1

(g) µ(7) = 0.1 (h) µ(8) = 0.1

Figure 1. Shape parametrization of a NACA0012 airfoil using a cubic design element (the notation µ(i)
designates the i-th component of the vector µ which refers to the i-th displacement degree of freedom of the

shape parameterization)

The flow over the airfoil is modeled using the compressible Euler equations, and these are solved
numerically using AERO-F [60]. Because this flow solver is three-dimensional, the two-dimensional
fluid domain around the airfoil is represented as a slice of a three-dimensional domain. This slice
is discretized using a body-fitted CFD mesh with 54816 tetrahedra and 19296 nodes (Figure 2a).
Specifically, the flow equations are semi-discretized by AERO-F on this CFD mesh using a second-
order finite volume method based on Roe’s flux [61].

For each airfoil configuration generated during the iterative optimization procedure, the steady
state solution of the flow problem is computed iteratively using pseudo-time-integration. For this
purpose, each sought-after steady state solution is initialized using the best previously computed
steady state solution available in the database†. The best steady state solution is defined here as that
steady state solution available in the database which, for the given airfoil configuration, minimizes
the residual of the discretized steady state Euler equations. Because the database of steady state flow
solutions is initially empty, the iterative computation of the steady state flow over the initial shape
— in this case, that of the NACA0012 airfoil — is initialized with the uniform flow solution.

†In this context, the database refers to the flow solutions computed for all shapes previously visited by the optimization
trajectory.

16

Control: 8-dimensional parameter defining wing shape
State: Pressure (with given target data), which is derived from PDE solution
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But this works in many cases

(a) CFD mesh for the Cub-RAE2822 airfoil (b) Pressure field (M� = 0.5, � = 0.0�)

Figure 3. Cub-RAE2822 mesh and pressure isolines computed at Mach 0.5 and zero angle of attack

To obtain a reference solution that can be used for assessing the performance of the proposed
ROM-based optimization method, problem (30) is first solved using the HDM as the constraining
PDE. In this case, the optimizer is found to reduce the initial value of the objective function by 9
orders of magnitude, before numerical difficulties cause it to terminate (see Figure 4). Relevant
statistics associated with this HDM-based reference solution of the optimization problem are
gathered in Table I. Essentially, 24 optimization iterations are required for obtaining a solution
µRAE2822 with a relative error well below 0.1%. These iterations incur a total of 29 HDM queries
(including those associated with the linesearch iterations). Figure 5 shows that the pressure
coefficient function associated with this reference solution matches very well the target pressure
coefficient function.
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Image: Progressive construction of a parametric reduced-order model for PDE-constrained optimization, Zahr & Farhat,

2015
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Sparse recovery and compressed sensing

Compressed or compressive sampling is a decoding strategy to identify a signal
from a small number of measurements.

The basic idea is understandable from Nyquist-Shannon sampling concepts:

Sampling at twice the maximum frequency is necessary and sufficient for general
signal recovery

Image: Wikipedia

I.e., it is generally not possible to uniquely recover signals from fewer equispaced
measurements.
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Encoding and decoding

In the simplest setting, signals are fully represented by a finite-dimensional vector of
Fourier Series coefficients:

c P 2N`1 ›Ñ xptq “ c0 `
Nÿ

j“1

cj cosp2⇡jtq ` cj`N sinp2⇡jtq.

The process of encoding is transformation of c into a new, typically compressed,
representation, e.g.,

c ›Ñ x “ px1, . . . , xM qT , xm “ xptmq,

for some sampling times tm.

Decoding is the process of transforming the encoded representation back into c
(hopefully without error).

The simplest form of encoding-decoding is temporal sampling (and its
corresponding decoding).
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Decoding under Nyquist-Shannon conditions

c
Encoding››››››Ñ x “ pxpt1q, . . . , xptM qqT ,

Decoding››››››Ñ rc

According to Shannon-Nyquist if the sampling tj is equispaced and M{2 • F ,
where F is the maximum frequency in the signal, then this process is exact.

But we’re greedy: this requires 2F samples, which is expensive if F is large. Can
we do better?

In general, no, without suffering lossy decoding.

A. Narayan (U. Utah – Math/SCI) Optimization examples I



Decoding under Nyquist-Shannon conditions

c
Encoding››››››Ñ x “ pxpt1q, . . . , xptM qqT ,

Decoding››››››Ñ rc

According to Shannon-Nyquist if the sampling tj is equispaced and M{2 • F ,
where F is the maximum frequency in the signal, then this process is exact.

But we’re greedy: this requires 2F samples, which is expensive if F is large. Can
we do better?

In general, no, without suffering lossy decoding.

A. Narayan (U. Utah – Math/SCI) Optimization examples I



Linear decoding

One way to observe the Shannon-Nyquist rate condition is writing this as a linear
problem:

Ac “ x,

pAqm,j “ cosp2⇡jtmq, j § N,

pAqm,j “ sinp2⇡jtmq, j ° N.

If M • 2N ` 1 and is equispaced over r0, 1q, there is a unique solution for c.

If M † 2N ` 1, we violate Shannon-Nyquist. In this case, kerpAq is nonempty, and
therefore,

c “ c0 ` v, v P kerpAq,

solves the problem, where c0 is the original signal.

I.e., there are infinitely many (perfectly reasonble) solutions – unique decoding is
not possible.

In particular, recovery of the unknown original signal c is practically infeasible.

This is essentially as far as we can go with linear decoding.
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Sparsity

Compressed sensing is a nonlinear, optimization-based decoding paradigm.

The argument: assuming extra signal structure allows one to circumvent
Shannon-Nyquist.

Define

}c}0 :“ # of nonzero entries in c,

which is not a norm.

Given s P , we say c is an s-sparse vector if }c}0 § s.

The high-level idea: if c is s-sparse, there are only s pieces of information, so
probably we can decode with only s pieces of data?

(This is not quite correct since we don’t know the support of c, the locations of the
nonzeros.)
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Sparse approximation

This suggests the following optimization problem:

Let c be an unknown s-sparse vector. Assume we have M samples of c in the
vector x, with associated design matrix A.

Establishing that a successful decoder is possible leverages the so-called robust
null-space property.

Theorem
If kerpAq contains no 2s-sparse vectors, then there is some decoder that uniquely

recovers c.

Note that this is a condition on what types of measurements A are permissible.

Such decoders are typically not numerically useful.
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Decoding via optimization

One decoder we might consider minimizes sparsity:

min }c}0 subject to Ac “ x.

This provides a reasonable initial point for investigation.

The major problem with this optimization is implementation: } ¨ }0 is not convex.

One might consider a relaxation of this problem, such as

min }c}˚ subject to Ac “ x,

where } ˚ }˚ is a more “friendly” function to work with, such as a convex function.

A. Narayan (U. Utah – Math/SCI) Optimization examples I



Decoding via optimization

One decoder we might consider minimizes sparsity:

min }c}0 subject to Ac “ x.

This provides a reasonable initial point for investigation.

The major problem with this optimization is implementation: } ¨ }0 is not convex.

One might consider a relaxation of this problem, such as

min }c}˚ subject to Ac “ x,

where } ˚ }˚ is a more “friendly” function to work with, such as a convex function.

A. Narayan (U. Utah – Math/SCI) Optimization examples I



Decoding via optimization

One decoder we might consider minimizes sparsity:

min }c}0 subject to Ac “ x.

This provides a reasonable initial point for investigation.

The major problem with this optimization is implementation: } ¨ }0 is not convex.

One might consider a relaxation of this problem, such as

min }c}˚ subject to Ac “ x,

where } ˚ }˚ is a more “friendly” function to work with, such as a convex function.
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`1 minimization

The closest convex `p-type norm to } ¨ }0 is } ¨ }1. So we could consider the problem:

min }c}1 subject to Ac “ x.

It is geometrically plausible that this decodes sparse vectors.

But does it correctly decode them?
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RIP and decoding

The seminal foundation of compressed sensing is the Restricted Isometry Property
(RIP).

Definition
A matrix A satisfies the ps, �q RIP if

p1 ´ �q}c}2 § }Ac}2 § p1 ` �q}c}2,

for all vectors c that are s-sparse, where } ¨ } is the `2 norm.

This condition on measurements ensures `1 optimization is sparsity-promoting:

Theorem
Assume c0 is s-sparse, and assume the measurement matrix A satisfies the RIP

condition with constants p4s, 1
3 q. Then the optimization

min }c}1 subject to Ac “ x.

uniquely recovers c0.
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RIP in practice

The RIP condition is actually quite strong, and significantly constrains the type of
permissible measurement matrices.

To mitigate pathological configurations that violate the RIP, randomness is typically
employed.

For example, if c P 2N`1, then let F denote the p2N ` 1q ˆ p2N ` 1q Fourier
measurement matrix.

Let A be formed by randomly selecting M ! 2N ` 1 rows of F (with
renormalization of columns).

If M • CSplog Nq6, then with high probability A satisfies an RIP condition.
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Compressed sensing in practice

By putting all this together, one can investigate the efficacy of compressed sensing
methods. 2 D. AMELUNXEN, M. LOTZ, M. B. MCCOY, AND J. A. TROPP

0 25 50 75 100
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FIGURE 1.1: Empirical phase transition in compressed sensing. The colormap indicates the empirical
probability that the �1 minimization problem (1.1) successfully recovers a sparse vector x0 �R100 from the vector
z0 = Ax0 of random linear measurements, where A is a standard normal matrix. The probability of success
increases with brightness from certain failure (black) to certain success (white).

minimization technique (1.1) almost always succeeds when we have an adequate number m of samples,
while it almost always fails when we have fewer samples. See Appendix A for the experimental details.

Figure 1.1 raises several interesting questions about the performance of the �1 minimization method for
solving the compressed sensing problem:

• What is the probability of success? For a given pair (s,m) of parameters, can we estimate the
probability that (1.1) succeeds or fails?

• Does a phase transition exist? Is there a simple curve m =�(s) that separates the parameter space
into regions where (1.1) succeeds or fails most of the time?

• Where is the edge of the phase transition? Can we find a formula for the location of this threshold
between success and failure?

• How wide is the transition region? For a given sparsity level s and ambient dimension d , how big
is the range of m where the probability of success and failure are comparable?

• Why does the transition exist? Is there a geometric explanation for the phase transition in com-
pressed sensing? Can we export this reasoning to understand other problems?

In Section 10, we summarize a large corpus of research that has attempted to address these questions.
Unfortunately, the current results are fragmentary, even for the vanilla compressed sensing problem. This
work provides a detailed answer to each of the questions we have posed.

1.2. Contributions. We approach phase transition phenomena by studying the intrinsic geometric properties
of convex cones. This attack is appropriate for the compressed sensing problem because we can express the
optimality condition for (1.1) in terms of a descent cone of the �1 norm. Our techniques apply more broadly
because convex cones play a central role in convex optimization. Let us summarize the main contributions of
this work.

• We introduce a new summary parameter for convex cones, which we call the statistical dimension.
This quantity canonically extends the linear dimension of a subspace to the class of convex cones.
(See Definition 2.1, Proposition 4.1, Proposition 5.11, and Proposition 5.12.)

Date: 26 March 2013.
2010 Mathematics Subject Classification. Primary: 90C25, 52A22, 60D05. Secondary: 52A20, 62C20.

Image: Living on the edge: A geometric theory of phase transitions in convex optimization, Amelunxen et al, 2013

An interesting observation: there are fairly clear phase transitions delineating the
region where recovery happens with probability 1, and where it happens with
probability 0.
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More recent compressed sensing
Recent methods in compressed sensing attempt to solve more difficult problems,

min }c}˚ subject to Ac “ x,

where } ¨ }˚ is a “sparsity-promoting” function.

Such problems are non-convex, but can produce better results.
506 Y. Xu et al. / Appl. Comput. Harmon. Anal. 55 (2021) 486–511

Fig. 1. 0.2-0.5-0.8 quantile band for the average recovery rate: Left: Uniform([�10, 10]) coe�cients. Right: Uniform([�10, �5] �[5, 10])
coe�cients. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

10 independent samples. Since the support selection procedure is algorithmically equivalent to applying a 
single-initialization algorithm s times, its average processing time is taken as s multiplied by the time for the 
same algorithm without support selection. The results are given in Fig. 2. Many of the algorithms exhibit 
similar asymptotic computational complexity, although CoSaMP, l1-l2+l1, and l1/l2+l1 have slightly better 
complexity. The computational cost for the support selection procedures is higher than most of the rest, 
but the asymptotic complexity is similar.

6.4. Simulation results

It can be seen from Fig. 1 that for both types of coe�cients, �1/�2 with the box constraint and SS-
initialization has the best performance among all non-convex optimization methods under comparison. �1/2
also performs fairly well but is slightly inferior to �1/�2. This is no surprise since �1/�2 utilizes the box 
constraint which is absent in the �1/2 algorithm. On the other hand, by taking the SS-initialization, the 
recovery rate of �1/�2 has significantly improved compared to a similar step taken for �q. This implies that 
�1/�2 is more sensitive to the initial value and the multi-initialization step enhances the success rate of the 
algorithm. By comparing the left- and right-hand panels in Fig. 1, it is easy to observe that all the methods 
under comparison perform better when the dynamic range of the coe�cients is large. This phenomenon 
can be well explained for reweighted �1 and �q, in which a reweighting step is used to reduce the bias 
between �q (0 < q � 1) and �0. However, for �1/�2, this is not well understood. We provide some theoretical 
evidence in Theorem 3 for this behavior in terms of the local optimality condition; nevertheless, a complete 
understanding of this is still absent.

It can be seen from Fig. 2 that based on our choice of algorithms, �1/�2 with single initialization demon-
strates a reasonable computational time asymptotically. It is more expensive than the greedy algorithms 
and �1, of which the solution is used to give a good initialization for �1/�2. It is almost at the same level as 
the �1 � �2 since both used the ADMM relaxation in the computation. Meanwhile, it is cheaper than the 
other non-convex algorithms such as �q and reweighted �1 which either require matrix inversion or solving 
a linear programming problem in each iteration (more advanced numerical methods can help accelerate 
computation in practice, but we do not investigate it here). The support selection procedure increases the 
processing time of the algorithms by a multiplicative factor of the sparsity level. When sparsity is large, 
this e�ect is not negligible but can be mitigated via parallel computing.

It is worth pointing out that although �1/�2 algorithms yield better recovery results when the magnitude 
of the entries of x0 are known a priori to be bounded from above, their recovery rate is closely related to 
the accuracy of the �1 (�q) minimizer. If the solution x obtained from minimizing �1 (�q) is incoherent with 
x0, then it is unlikely that �1/�2 will give substantially better result. Our initialization approach proposed 
earlier is not able to completely remove such a dependence, and only mitigates the impact. However, it is 

Image: Analysis of the ratio of `1 and `2 norms in compressed sensing, Xu et al, 2021
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Practical compressed sensing

Many methods are robust to noise, solving, e.g.,

min }c}1 subject to }Ac ´ x}2 § ✏.

There are theoretical guarantees ensuring accuracy up to ✏.

Most realistic problems are “approximately sparse” or compressible and not exactly
sparse.

Compressed sensing theory extends to ensuring accurate decoding in these cases.
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Matrix completion

A problem related to compressed sensing and sparse recovery: matrix completion.

Let A an unknown m ˆ n matrix. We have access to a small number of entries:

AS , S Ä rms ˆ rns,

and our goal is reconstruct A as well as possible.

Again, we should not expect this is possible in general without some assumptions
on A.
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Matrix completion examples

The matrix completion problem is inspired by several real-world examples:
– Collaborative filtering – inference about individual preferences from observed

group preference.
This is the “Netflix problem”: how much will someone like a new movie? User
preferences are frequently determined by a small number of considerations,
suggesting low-rank structure.

– Social networks: Abstract “distances” between agents can be measured
sparsely. Can we fill in missing data to identify cliques, social patterns,
emergent behavior, etc?

– Remote sensing: A full correlation matrix for incoming EM signals cannot be
measured, but sensors located at certain locations give partial information.
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Low-rank matrix completion

If we can only observe a few entries, it seems plausible that we can exactly recover
low-rank matrices.

Like in the compressed sensing case regarding sparsity, this is not quite true without
additional properties.

Given AS , then as a first step we might consider the optimization,

min rankpBq subject to BS “ AS .

We don’t have good algorithms for this problem. (It’s NP hard.)

So like before, let’s relax the problem.
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Low-rank matrix completion, II

A closest convex relaxation to the low-rank constraint is nuclear norm minimization,

min }B}NN subject to BS “ AS ,

where

}B}NN “ Trp
?

B˚Bq “
rÿ

j“1

�rpBq,

is the nuclear norm of a matrix.
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Low-rank matrix completion, II

min }B}NN subject to BS “ AS ,

Like in compressed sensing, exact recovery is possible with an optimal number of
samples, subject to some additional assumptions.

Theorem
Define N :“ maxtn, mu, and let A have fixed rank r that is “small”. Assuming the

left- and right-singular vectors of A are not too “peaked”, and if,

|S| Á CN log2 N,

then sampling these |S| samples uniformly at random from A ensures that the

nuclear norm minimization exactly recovers A exactly with high probability.
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