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Examples in optimization

We’ll take a short tour of some examples in optimization:
– Machine learning

§ Model training to deep learning: Training of model parameters

§ Classification: Building of classification models

– Statisics
§ Bayesian inference: Updating beliefs with data

§ Gaussian Processes: Hyperparameter optimization

– PDE-constrained optimization: Optimization with PDE constraints
– Sparse approximation: Compressed sensing and matrix completion
– Stochastic programming: Optimization under uncertainty
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Training models

Training models is one of the simplest examples of optimization.

Let X be an input space, and Y an output space.
Given data D from an unknown function f : X Ñ Y,

D “ tpxj , fpxjqquMj“1 ,

the wish to build a model that approximates f .

Linear models define a model space spanned by fixed functions,

fN pxq “
Nÿ

j“1

cjvjpxq, x P X ,

where the model is trained by computing the cj coefficients,

tc1, . . . , cNu “ argmin
c1,...,cn

Lpc1, . . . , cn;Dq.

The function L is sometimes called a loss function.
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Examples of training

Such a paradigm is used everywhere, sometimes just as one ingredient:
– data/curve fitting
– statistical models
– clustering (supervised or unsupervised)
– simulations of differential equations
– deep learning
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Linear models

D “ tpxj , fpxjqquMj“1 , fN pxq “
Nÿ

j“1

cjvjpxq.

tc1, . . . , cNu “ argmin
c1,...,cn

Lpc1, . . . , cn;Dq.

Note: “linear approximation” ‰ “linear model”

A frequently used loss function is the quadratic loss, or mean square error:

Lpc;Dq “
Mÿ

j“1

pfpxjq ´ fN pxjqq2 .

This is a quadratic function of the coefficients cj with positive semi-definite
Hessian.

There is a unique solution if and only if the design matrix,

A P MˆN , pAqi,j “ vjpxiq,
has full column rank.

No particularly special optimization is needed here, just some linear algebra.
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Constrained linear models

Constraints on model behavior are often feasible to implement for linear models.

For example, enforcing defines a feasible set:

S “  
c1, . . . , cN

ˇ̌
fN pxq • 0 for all x P X

(

Nontrivial constraints are still “nice”: S is convex.
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Deep learning models
In principle, any kind of parametric model can be used, e.g., a neural network.

A neural network with L layers (L ´ 2 are “hidden”) is given by,

fN pxq “ hLpxq, h` “ � pW`h`´1 ` b`q ,
for some weight matrices and bias vectors ✓ “ tpW`, b`quL`“2, with ✓ P N .

� is an “activation function”, common choices emulating on/off switches, such as

�RELUpxq “ x x•0, �sig “ ex

ex ` 1
.

The initial layer is the input: h1pxq “ x.

Image: Glosser.ca, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons
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Training deep learning models

Training from data, even with a quadratic loss, is less pleasant than before.

✓ “ argmin
✓

Lp✓;Dq “ argmin
✓

Mÿ

j“1

pfpxjq ´ fN pxjqq2 .

This is complicated since ✓ fiÑ fN is not linear in ✓ anymore.
– The optimization is non-convex
– Analytically computing stationary points is unrealistic
– How much data is required to achieve good training is unclear
– Little theory or intuition about feasible sets for constraints
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Classification

Some (naive) supervised classification models just perform model fitting:

tpxj , cjquMj“1,

where xj are features and cj are discrete classification labels.

One strategy quantizes classification labels as points on the unit simplex:

Labels `1, . . . , `J Ñ

e1 “ p1, 0, 0, . . .q Ø `1
e2 “ p0, 1, 0, . . .q Ø `2
e3 “ p0, 0, 1, . . .q Ø `3
...

Training proceeds by emulating the model with labels cj replaced by appropriate
vector ek.

– Any general model may be used for prediction
– Predictions often lie in �J`1, giving quantitative information about label

likelihoods
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Statistical inference

Many statistical inference problems are cast in the Bayesian paradigm.

– frequentist paradigm: Probabilities encode actual randomness. If an
experiment were repeated several times, the outcomes would reflect modeled
probabilities.

– Bayesian paradigm: Probabilities encode belief, not necessarily randomness.
There might be an underlying deterministic reality, but we model our
uncertainty about it as randomness.

Inference is the task of learning about unobservables via data (observables).

Statistical inference makes quantitative predictions about probabilities from data.
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Bayesian inference

Data should inform beliefs

P
`
unobservable

ˇ̌
data

˘ “ P
`
data

ˇ̌
unobservable

˘
P punobservableq

P pdataq

– P punobservableq: the prior distribution, encodes belief about unobservable
without data

– P pdata
ˇ̌
unobservableq: the likelihood, knowledge about how unobservable

values would affect observed data
– P pdataq: the evidence, normalization of the prior and likelihood
– P

`
unobservable

ˇ̌
data

˘
: the posterior distribution, the object of interest
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Posterior distribution analysis

P
`
unobservable

ˇ̌
data

˘ “ P
`
data

ˇ̌
unobservable

˘
P punobservableq

P pdataq
Types of analysis using the posterior:

– computing statistics
– generating samples
– computing mode of the distribution – the maximum a posteriori (MAP)

estimate
Computing the MAP is explicitly an optimization problem:

MAP “ argmax
u

P pd|uq P puq.

(Sometimes maximizing just the likelihood is desired.)
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Example: Gaussian Processes
Gaussian processes (GPs) are stochastic models that predict data.

Images: scikit-learn documentation

The ingredients:
– A covariance/correlation function Kpx, x1; ✓q
– “Hyperparmeters” ✓ that affect the type of covariance function (e.g.,

correlation length)
A GP is trained from data polluted with a variance-�2 Gaussian noise,

c “ pA ` �Iq´1f, pAqi,j “ Kpxi, xj ; ✓q
This defines the mean:

fN px; ✓q “
Nÿ

i“1

ciKpx, xi; ✓q.
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Hyperparameter training

The hyperparameters ✓ can significantly affect the quality of the model.

Image: https://www.borealisai.com/en/blog/tutorial-8-bayesian-optimization

One step in training GP’s is hyperparameter optimization:
The hyperparameters ✓ are chosen to maximize the (log-)likelihood:

✓ “ argmax
✓

´1
2
fTAp✓q´1f ´ 1

2
log detAp✓q.
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