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Why linear algebra?

Linear algebraic operations are foundational tools for many optimization problems.

Some optimization problems are also explicitly solvable using linear algebra.

We’ll focus on a subset of tasks in numerical linear algebra, revolving around the
factorizations,

– Singular value decomposition: writing a matrix as a conic sum of rank-1
pairwise orthogonal matrices

– QR decomposition: Orthogonalizing vectors via Gram-Schmidt-like approaches
– LU decomposition: Gaussian elimination
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Vector metrics

The “size” of a vector can be measured via a norm.

Several vectors norms are “common”:
– `p norms, p • 1: }v}pp “ ∞n

j“1 |vj |p.
– }Ax}2 is a norm for any invertible (hence, square) matrix A

Without context, typically } ¨ } refers to the 2-norm } ¨ }2.

Norms are convex functions....
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Matrix metrics

Let A P mˆn. Matrix norms are quite a bit more complicated.

Two norms that are perhaps the most common are the induced 2-norm,

}A}2 “ sup
x‰0

}Ax}2
}x}2 ,

and the Frobenius norm,

}A}2F “
ÿ

iPrms,jPrns
|Ai,j |2

Without context, frequently } ¨ } refers to the spectral or induced 2-norm } ¨ }2.
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Norm equivalence

For finite-dimensional vectors and matrices, any two norms are equivalent.

I.e., if } ¨ }a and } ¨ }b are (any!) vectors norms on n-dimensional space, then D a
constant C “ Cpnq such that,

}v}a § Cpnq}v}b, @ v.

The same is true for matrix norms, but C may depend on both m and n.
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Eigenvalues and eigenvectors

Let A P nˆn. An eigenvalue of A is any complex number satisfying,

Av “ �v, v P nzt0u,

and any (nonzero) vector v in the equality above is an eigenvector.

All square matrices have exactly n eigenvalues, p�1, . . . ,�nq, possibly repeated.

Av1 “ �1v1, Av2 “ �2v2, . . . Avn “ �nvn.

Non-defective matrices have a full set of linearly independent eigenvectors:

spantv1, . . . , vnu “ n.

Non-defective matrices are, equivalently, diagonalizable, that is,

V ´1AV “ ⇤, V “ pv1, . . . , vnq, ⇤ “ p�1, . . . ,�nq.
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Diagonalization

Diagonalizable matrices are, under an appropriate linear transformation, equal to a
diagonal scaling operation.

“Most” matrices are diagonalizable, but many are not:

A “
ˆ

1 1
0 1

˙
.

A matrix that is diagonalizable is “nice” in some limited sense, but there are “nicer”
matrices.

The spectral radius of A is the maximum eigenvalue modulus:

⇢pAq “ max
jPrns

|�j |.

Q: Eigenvalues seem to measure “size”. How does ⇢pAq compare to, say, }A}2?
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Unitary diagonalization

A more well-behaved eigenvalue decomposition would be one where the eigenvalue
matrix is unitary. (Recall U P nˆn is orthogonal or unitary if UTU “ I, implying
UT “ U´1.)

I.e., a “nice” square matrix A would be one satisfying,

A “ V ⇤V ´1, V TV “ I.

Such matrices are unitarily diagonalizable.

Theorem
A matrix A is unitarily diagonalizable if and only if it is a normal matrix.

(A matrix A is normal if AAT “ ATA.)

Note that symmetric and skew-symmetric matrices are normal matrices.

A. Narayan (U. Utah – Math/SCI) Linear algebra



Unitary diagonalization

A more well-behaved eigenvalue decomposition would be one where the eigenvalue
matrix is unitary. (Recall U P nˆn is orthogonal or unitary if UTU “ I, implying
UT “ U´1.)

I.e., a “nice” square matrix A would be one satisfying,

A “ V ⇤V ´1, V TV “ I.

Such matrices are unitarily diagonalizable.

Theorem
A matrix A is unitarily diagonalizable if and only if it is a normal matrix.

(A matrix A is normal if AAT “ ATA.)

Note that symmetric and skew-symmetric matrices are normal matrices.

A. Narayan (U. Utah – Math/SCI) Linear algebra



Unitary diagonalization

A more well-behaved eigenvalue decomposition would be one where the eigenvalue
matrix is unitary. (Recall U P nˆn is orthogonal or unitary if UTU “ I, implying
UT “ U´1.)

I.e., a “nice” square matrix A would be one satisfying,

A “ V ⇤V ´1, V TV “ I.

Such matrices are unitarily diagonalizable.

Theorem
A matrix A is unitarily diagonalizable if and only if it is a normal matrix.

(A matrix A is normal if AAT “ ATA.)

Note that symmetric and skew-symmetric matrices are normal matrices.

A. Narayan (U. Utah – Math/SCI) Linear algebra



The spectral theorem

The facts discussed above are typically summarized and extended through the
Spectral Theorem.

Theorem
Assume A P nˆn is normal. Then A is unitarily diagonalizable.
Furthermore:

– If A is Hermitian/symmetric, then all its eigenvalues are real-valued.
– If A is skew-Hermitian/skew-symmetric, then all its eigenvalues are purely

imaginary.

Unfortunately, “most” matrices are not normal.

However a decomposition, similar to unitary diagonalization, exists for general, even
rectangular, matrices.
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The singular value decomposition

Let A P mˆn. Then, the singular value decomposition (SVD) of A is,

A “ U⌃V T ,

where
– U P mˆm is unitary. U “ pu1, . . . , umq.
– V P nˆn is unitary. V “ pv1, . . . , vnq.
– ⌃ P mˆn is diagonal with non-negative entries on the diagonal.

⌃ “ diagp�1, . . . ,�pq, with p “ mintm,nu.
By convention, the singular values are listed in decreasing order,

�1 • �2 • ¨ ¨ ¨ • �p.
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SVD properties

A “ U⌃V T , U “ pu1, . . . umq, V “ pv1, . . . , vnq

– }A}2 “ maxjPrps �j “ �1.
– }A}2F “ ∞

jPrps �
2
j

– With r “ rankpAq, �j ° 0 for 1 § j § r and �j “ 0 for j ° r.
– rangepAq “ spantu1, . . . , uru
– kerpAq “ spantvr`1, . . . , vnu
– t�2

1 , . . . ,�
2
ru Ñ �pAAT q,�pATAq.
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Rank-1 summations

A direct algebraic computation with the SVD reveals,

A “ U⌃V T “
pÿ

j“1

�jpujv
T
j q.

Note: ujv
T
j has Frobenius norm/2-norm equal to 1 and pujv

T
j qT pukv

T
k q “ �j,k.

Thus, the SVD is a conic sum of unit-norm “orthogonal” matrices.

The SVD allows us to directly answer a particularly important optimization
question:

argmin
BPS

}A ´ B}2 “? S “  
C P mˆn

ˇ̌
rankpCq § k

(
,

where k is fixed and satisfies k § rankpAq.
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SVD solves some optimization problems

Direct manipulation of the SVD of a matrix solves certain optimization problems.

We will see this for:
– low-rank approximation
– Procrustes analysis
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Optimal low-rank approximation

With the SVD decomposition,

A “ U⌃V T “
pÿ

j“1

�jpujv
T
j q,

define Ak :“ ∞k
j“1 �jpujv

T
j q as a truncation of this sum.

Theorem (Schmidt-Eckart-Young-Mirsky)

Ak “ argmin
rankpBq§k

}A ´ B}˚,

where } ¨ }˚ is either the induced 2-norm, or the Frobenius norm.
Furthermore we have an accuracy certificate,

min
rankpBq§k

}A ´ B}2 “ }A ´ Ak}2 “ �k`1,

min
rankpBq§k

}A ´ B}2F “ }A ´ Ak}2F “
pÿ

j“k`1

�2
j .

This is a result about low-rank matrix approximation.
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Compression and dimension reduction

Optimal low-rank approximations are often used in compressing data
representations.

Let A P Mˆn be given, with M " 1.
SVD-based (optimal) compression of A amounts to replacing A with its rank-k
approximation,

A « Ak “
kÿ

j“1

�jpujv
T
j q

Storage of A „ Mn numbers
Storage of Ak „ pM ` nqk ! Mn numbers
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Procrustes analysis
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Procrustes analysis

gauge invariant [14] (i.e., the cost does not depend on the
coordinate frame in which the reference shape and the transfor-
mations are expressed).

In the computer vision literature, the problem of PA has been
extensively explored. Procrustes analysis has been applied to
aligning shapes (e.g., [16]) and appearance (e.g, [6,17–19]).

In the last 10 years, several algorithms that align data with
respect to geometric transformations using appearance features
have become popular. Frey and Jojic [20] proposed a method for
learning a factor analysis model that is invariant to geometric
transformations. The computational cost of this method grows
polynomially with the number of possible spatial transformations
and it can be computationally intensive when working with high-
dimensional motion models. To improve upon that, De la Torre
and Black [17] proposed parameterized component analysis: a
gradient-based method that learns a PCA model invariant to affine
transformations. Baker et al. [19] showed how to learn active
appearance models (AAMs) in a way that are invariant to rigid and
non-rigid motion. De la Torre and Nguyen [6] extended parame-
terized component analysis to deal with non-linear appearance
representations (using kernels) and non-rigid transformations.
Miller et al. proposed the congealing method [18], which uses an
entropy measure to align images with respect to the distribution
of the data. Cox et al. [19] extended [18] through a least-squares
optimization. Kookinos and Yuille [21] proposed a probabilistic
framework and extended previous approaches [17–19] to deal
with articulated objects using a Markov random field (MRF) on top
of AAMs.

Previous work on PA uses 2D shapes or images, and hence
suffer from non-uniform sampling and high computational com-
plexity. If one has access to the 3D model of the object, CGPA can
provide a better 2D model of the object.

Pizarro et al. [16] have recently proposed a convex approach for
GPA based on the reference-space model. In their case, the cost
function is expressed with a quaternion parametrization which
allows conversion to a sum of squares program (SOSP). Finally,
the equivalent semi-definite program of a SOSP relaxation is
solved using a convex optimization tool and providing the global
minimum.

2.2. Functional data analysis (FDA)

Our work is related to previous work on FDA [22]. FDA [22] is a
branch of statistics that analyzes data providing formation about

functions. FDA methods are adaptations of classical multivariate
methods such as PCA [22], Linear Discriminant Analysis (LDA) or
analysis of variance (ANOVA) [23].

There have been several works in computer vision that make use
of FDA. Ormeneit et al. [24] proposed a robust automatic method for
modeling cyclic 3D human motion, such as person walking
sequence, using motion-capture data. The pose of the body is
represented as a time series of joint angles which are automatically
segmented into a sequence of motion cycles. The mean and the
functional principal components of these cycles are computed using
a new algorithm that enforces smooth transitions between the
cycles by operating in the Fourier domain. An advantage of this
method is that it automatically deals with noise and missing data.
The model is later used for Bayesian tracking of 3D human motion.
Levin and Shashua [25] applied a continuous formulation in the
case of PCA to model faces under different illuminations. Their
method integrates over the convex hull of the sample data, and
achieves unbiased estimates of the principal components of the
images.

3. Mathematical background

This section describes the mathematical background to our
work. We review basic statements from the calculus of variations
and integral calculus, as well as details regarding SO(3), and
measures defined on it.

3.1. Calculus

Let f : Rn-R be a smooth scalar function. If xnARn is a solution
of the problem

f ðxnÞ ¼ min
xARn

f ðxÞ; ð3Þ

then the following equation is satisfied:

∇x f ðxnÞ ¼ 0; ð4Þ

where ∇x is the gradient operator of the function f ðxÞ with respect
to x.

Now letΩ$Rn be an open and a bounded subset, let F : Rd-R

be a mapping, and we want to find a solution, vn : Ω-Rd, to the

Fig. 2. Left: data-space model. Right: reference-space model. Note that Ai ¼ T%1
i .

L. Igual et al. / Pattern Recognition 47 (2014) 659–671 661

Image: Igual et al, Continuous Generalized Procrustes analysis

Procrustes analysis: “benignly” modify data set to match reference.

Image registration registration, shape analysis, uniformizing disparately scaled data
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The orthogonal Procrustes problem

Reference data: collect landmark points as columns of a matrix R.
R P mˆn: n points in m-dimensional space.

Image: Pascoal et al, Plastic and Heritable

Components of Phenotypic Variation in Nucella lapillus: An Assessment Using Reciprocal Transplant and Common

Garden Experiments

Object data: A P mˆn the corresponding landmarks on source object
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The orthogonal Procrustes problem

R P mˆn, A P mˆn.

Goal: “align” A to best fit R. Types of allowed alignments:
– translations
– rotations
– reflections

Written in math: find an orthogonal matrix Q over m-dimensional space so that
QA « R.

min
QP mˆm

}QA ´ R}2F subject to QTQ “ QQT “ Im

Is this problem convex?
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The Procrustes solution

min
QP mˆm

}QA ´ R}2F subject to QTQ “ QQT “ Im

Solution:
– Compute the SVD of RAT “ U⌃V T

– Solution: Q “ UV T .
A related problem: the “closest” unitary matrix to a given A P mˆm,

min
QP mˆm

}Q ´ A}2F subject to QTQ “ QQT “ Im

Solution: Q “ UV T , where A “ U⌃V T is the SVD of A.
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Orthogonalization

Our second factorization: QR

Idea: Given vectors a1, . . . , an P m, orthogonalize them:

ta1, . . . , anu ›Ñ tq1, . . . , qnu Ä m

uch that xqk, qjy “ qTj qk “ �k,j .

The conceptually simple strategy to accomplish this: Gram-Schmidt
orthogonalization:

r1,2 “ xa2, q1y rk,j “ xaj , qky , pk † jq
u1 “ a1 u2 “ a2 ´ r1,2q1, uj “ aj ´

ÿ

k†j

rk,jqk

r1,1 “ }u1}2 r2,2 “ }u2}2, ¨ ¨ ¨ rj,j “ }uj}2
q1 “ a1

r1,1
q2 “ u2

r2,2
qj “ uj

rj,j
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The QR decomposition

Collect all these vectors into matrices:

A “
¨

˝ a1 a2 an

˛

‚ Q “
¨

˝ a1 a2 an

˛

‚

If one maintains a diary of orthogonalization operations, this is the QR
decomposition:

A “ QR

– Q is an orthgonal matrix: QTQ “ I.
– R is an upper triangular matrix.
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Pivoting

A more powerful version of this algorithm is a pivoted one:

At step j, the standard factorization computes:

rj,j “
›››››aj ´

ÿ

k†j

xaj , qky qk
›››››
2

“
››aj ´ PQj´1aj

››
2
, Qj´1 “ spantq1, . . . , qk´1u

The pivoted QR decomposition first performs the permutation:

aj , aj`1, . . . , as´1, as, as`1, . . . , an´1, an

Ó as, aj`1, . . . , as´1, aj , as`1, . . . , an´1, an,

where s is chosen according to the rule,

s “ argmax
k“j,...,n

››ak ´ PQj´1ak

››
2
.
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The pivoted QR decomposition

I.e., this corresponds to a permutation of the column indices t1, . . . , nu.

Then there is a permutation matrix1 P P nˆn, such that

AP “ QR,

1A permutation matrix P has the form P “ re⇡p1q, . . . , e⇡pnqs for some permutation map ⇡ of
rns
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Combinatorial optimization

Many optimization problems take the form,

max
p1,...,pN P⌦

fN pp1, . . . , pN q,

where fN is an objective function of N arguments, with ⌦ a feasible set of options.
(I.e., an optimization problem with N choices.)

– fN is the traveling salesman problem path length, with N stops.
– The knapsack problem: identify N items, where each has specifics weights and

payoffs
– The assignment problem: Divide N agents among many tasks so that the task

payoff is maximized while minimizing the agent cost
These problems are typically hard: require global optimize over N objects
simultaneously
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Greedy algorithms

One strategy to approximately solve combinatorial optimization problems: Greedy
methods.

max
p1,...,pN P⌦

fN pp1, . . . , pN q,

In our languange, a greedy algorithm to approximate the solution above is:
– Choose p1 “ argmaxpPS f1ppq
– For j “ 2, . . . , N : choose pj “ argmaxpPS fjpp1, . . . , pj´1, pq

Greedy algorithms (almost always) do not result in optimal solutions.

But frequently they are close to optimal.
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Pivoting and greedy algorithms

Consider the following (combinatorial) optimization problems:

S “ argmax
SÄrns
|S|“k

max
jPrns

}aj ´ PASaj}2 ,

S “ argmax
SÄrns
|S|“k

| detAT
SAS |

Above, AS is the submatrix of A formed by a subset of column indices S.
PAS is the orthogonal projection operator, projecting general vectors onto
rangepASq.

1. Problem 1: Compute the subset of columns of A that minimizes the projection
error of projecting each column of A onto the subspace spanned by the column
subset.

2. Problem 2: Choose a column subset S that maximizes the determinant of the
Gram matrix of AS .
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1. Problem 1: Compute the subset of columns of A that minimizes the projection
error of projecting each column of A onto the subspace spanned by the column
subset.

2. Problem 2: Choose a column subset S that maximizes the determinant of the
Gram matrix of AS .
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Problem 1: Minimizing residuals

S “ argmax
SÄrns|S|“k

max
jPrns

}aj ´ PASaj}2 ,

The pivoted QR decomposition gives an approximate (but easily computable!)
solution,

AP “ QR

Choosing S as the first k columns chosen by the permutation matrix P is
equivalent to the following greedy procedure:

sj “ argmax
sPrns

max
jPrns

›››aj ´ PASj´1
aj

›››
2
, Sk “ ts1, . . . , sku.

This kind of problem appears exactly in
– “Structured” data reduction: approximation of large data sets by a small

number of exemplars (data coresets, matrix skeletonization)
– Scientific model reduction: columns of A are PDE solutions
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Problem 2: Determinant maximization

S “ argmax
SÄrns|S|“k

| detAT
SAS |

The pivoted QR decomposition gives an approximate (but easily computable!)
solution,

AP “ QR

Choosing S as the first k columns chosen by the permutation matrix P is
equivalent to the following greedy procedure:

sj “ argmax
sPrns

max
jPrns

ˇ̌
ˇdetAT

S˚
j´1

AS˚
j´1

ˇ̌
ˇ Sk “ ts1, . . . , sku, S˚

k “ Sk Y tsu.

This kind of problem appears exactly in
– Optimal experimental design: A D-optimal design of experiments maximizes

the determinant of the Fisher Information Matrix.
– Function approximation: Point configuations maximizing a determinant are

Fekete points, and are excellent sites for collecting data.
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