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Why linear algebra?

Linear algebraic operations are foundational tools for many optimization problems.
Some optimization problems are also explicitly solvable using linear algebra.

We'll focus on a subset of tasks in numerical linear algebra, revolving around the
factorizations,

— Singular value decomposition: writing a matrix as a conic sum of rank-1
pairwise orthogonal matrices

— QR decomposition: Orthogonalizing vectors via Gram-Schmidt-like approaches

— LU decomposition: Gaussian elimination
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Why linear algebra?

Linear algebraic operations are foundational tools for many optimization problems.
Some optimization problems are also explicitly solvable using linear algebra.

We'll focus on a subset of tasks in numerical linear algebra, revolving around the
factorizations,

— Singular value decomposition: writing a matrix as a conic sum of rank-1
pairwise orthogonal matrices

— QR decomposition: Orthogonalizing vectors via Gram-Schmidt-like approaches
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Vector metrics

The “size” of a vector can be measured via a norm.

Several vectors norms are “common’:
— £P norms, p = 1: |jv[[§ = X7, [v;[”.
— | Az|2 is a norm for any invertible (hence, square) matrix A

Without context, typically || - | refers to the 2-norm | - ||2.

Norms are convex functions....
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Matrix metrics

Let A€ R™*™. Matrix norms are quite a bit more complicated.

Two norms that are perhaps the most common are the induced 2-norm,

A
4], = sup 142
x#0 H$||2
and the Frobenius norm,
Al = >0 Al

ie[m],je[n]

Without context, frequently || - | refers to the spectral or induced 2-norm | - ||2.
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Norm equivalence

For finite-dimensional vectors and matrices, any two norms are equivalent.

l.e., if |- |« and || - |[» are (any!) vectors norms on n-dimensional space, then 3 a
constant C' = C'(n) such that,
n
[v]a < C()fv]e, v .6 IR

The same is true for matrix norms, but C' may depend on both m and n.
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Eigenvalues and eigenvectors

Let A€ R"*™. An eigenvalue of A is any complex number satisfying,
Av = D, v e C™\{0},

and any (nonzero) vector v in the equality above is an eigenvector.
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Eigenvalues and eigenvectors

Let A€ R"*™. An eigenvalue of A is any complex number satisfying,
Av = v, v e C"\{0},
and any (nonzero) vector v in the equality above is an eigenvector.
All square matrices have exactly n eigenvalues, (A1,...,\,), possibly repeated.
Avi = \vs, Avs = Aava, ... Av, = ApUn.
Non-defective matrices have a full set of linearly independent eigenvectors:

span{vi,...,v,} = C",
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Eigenvalues and eigenvectors

Let A€ R"*™. An eigenvalue of A is any complex number satisfying,
Av = Ao, ve C™"\{0},
and any (nonzero) vector v in the equality above is an eigenvector.
All square matrices have exactly n eigenvalues, (A1,...,\,), possibly repeated.
Avi = \vs, Avs = Aava, ... Av, = ApUn.
Non-defective matrices have a full set of linearly independent eigenvectors:
span{vi,...,v,} = C",
Non-defective matrices are, equivalently, diagonalizable, that is,

VTTAV = A, V= (v1,...,vn), A=A, 0.

A\ = VA — (/4\4 - /]\/.\): («h/)—-- /\,u,,J
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Diagonalization

Diagonalizable matrices are, under an appropriate linear transformation, equal to a
diagonal scaling operation.

“Most” matrices are diagonalizable, but many are not:
1 1
A= ( b )

A matrix that is diagonalizable is “nice” in some limited sense, but there are “nicer”
matrices.
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Diagonalization

Diagonalizable matrices are, under an appropriate linear transformation, equal to a
diagonal scaling operation.

“Most” matrices are diagonalizable, but many are not:

A:(}) })

A matrix that is diagonalizable is “nice” in some limited sense, but there are “nicer”
matrices.

The spectral radius of A is the maximum eigenvalue modulus:

p(A) = max |,].

j€[n]

Q: Eigenvalues seem to measure “size”. How does p(A) compare to, say, |Al2?

~ [[Ag 1l
. Z N syp Al 4v.ll
[ g PW‘“/“{z > X:flf = ‘W;ai Jﬁ\/ui*: (4)
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but - A:(b R)/ R>0

Mj=s1 ¥R = /(4)"1

bat M o = i, 2
I,
But: Sppwe A 55 didgonalizakle, A<V AV gad Hgr
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Unitary diagonalization

iYLy

A more well-behaved eigenvalue decomposition would be one where the_ei
matrix is unitary. (Recall U € R™*" is orthogonal or unitary if UTU = I, implying
vt =U"")

l.e., a “nice” square matrix A would be one satisfying,
A=VAVTH ViV =1

Such matrices are unitarily diagonalizable.
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Unitary diagonalization

A more well-behaved eigenvalue decomposition would be one where the eigenvalue
matrix is unitary. (Recall U € R™*" is orthogonal or unitary if UTU = I, implying
Ul =uU"1)

l.e., a “nice” square matrix A would be one satisfying,
A=VAVTH ViV =1

Such matrices are unitarily diagonalizable.

Theorem

A matrix A is unitarily diagonalizable if and only if it is a normal matrix.

(A matrix A is normal if AAT = AT A))
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Unitary diagonalization

A more well-behaved eigenvalue decomposition would be one where the eigenvalue
matrix is unitary. (Recall U € R™*" is orthogonal or unitary if UTU = I, implying
Ul =uU"1)

l.e., a “nice” square matrix A would be one satisfying,
A=VAVTH ViV =1

Such matrices are unitarily diagonalizable.

Theorem

A matrix A is unitarily diagonalizable if and only if it is a normal matrix.

(A matrix A is normal if AAT = AT A))

Note that symmetric and skew-symmetric matrices are normal matrices.
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The spectral theorem

The facts discussed above are typically summarized and extended through the
Spectral Theorem.

Theorem

Assume A € C™*"™ is normal. Then A is unitarily diagonalizable.
Furthermore:

— If A is Hermitian/symmetric, then all its eigenvalues are real-valued.

— If A is skew-Hermitian/skew-symmetric, then all its eigenvalues are purely
imaginary.
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The spectral theorem

The facts discussed above are typically summarized and extended through the
Spectral Theorem.

Theorem

Assume A € C™*"™ is normal. Then A is unitarily diagonalizable.
Furthermore:

— If A is Hermitian/symmetric, then all its eigenvalues are real-valued.

— If A is skew-Hermitian/skew-symmetric, then all its eigenvalues are purely
imaginary.

Unfortunately, “most” matrices are not normal.

However a decomposition, similar to unitary diagonalization, exists for general, even
rectangular, matrices.
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The singular value decomposition

Let A€ R™*™. Then, the singular value decomposition (SVD) of A is,

A=UxVT,

where
— UeR™ ™ is unitary. U = (u1,...,Um).
- VeR""is unitary. V = (v1,...,vn).

— X e R™*" is diagonal with non-negative entries on the diagonal.
Y = diag(o1,...,0p), with p = min{m, n}.

By convention, the singular values are listed in decreasing order,

01202 =+ = Op.
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SVD properties

A=UxvT, U= (u1,...umn), V = (v1,...,0n)

= [All2 = maxjep) 05 = o1

= [AlF = Xjen 5

— With r = rank(A), 0; >0for 1 < j<randog; =0 forj>r.
— range(A) = span{ui,...,ur}

— ker(A) = span{vy41,...,Un}

— {07,...,02} € MAAT), A(AT A).
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Rank-1 summations d, - urm (r' ¢y (“\,’7‘/
( | -

A direct algebraic computation with the SVD reveals,

p
A=USVT = ) oj(usv; ).
CT
j=1 <\{3\/\“"\, dk’ V/L >F

(r
Note: uw;v? has i 2-norm equal to 1 and (uw; o) (upvl) = 6, .
I~ J%a k J

Thus, the SVD is a conic sum of unit-norm “orthogonal’ matrices.
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Rank-1 summations

A direct algebraic computation with the SVD reveals,

p
A=USVT = ) oj(usv; ).
j=1

Note: u v’ has Frobenius norm/2-norm equal to 1 and (w07 (urvl) = §; .
3 U; q jU; k 7,

Thus, the SVD is a conic sum of unit-norm “orthogonal’ matrices.

The SVD allows us to directly answer a particularly important optimization
question:

argmin |A — B2 =7 S ={CeR™" | rank(C) < k},
BeS
— . ) 6 1
where k is fixed and satisfies & < rank(A). ( 0 o ) (o /
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SVD solves some optimization problems

Direct manipulation of the SVD of a matrix solves certain optimization problems.

We will see this for:
— low-rank approximation

— Procrustes analysis

A. Narayan (U. Utah — Math/SClI) Linear algebra



Optimal low-rank approximation
With the SVD decomposition,

J

P
A=UxV" = Z oi(ujv; ),
j=1

define Ay = Z;‘f:l o;(ujv; ) as a truncation of this sum.

Theorem (Schmidt-Eckart-Young-Mirsky)

A = argmin |A — B4,
rank(B)<k

where | - ||« is either the induced 2-norm, or the Frobenius norm.

Furthermore we have an accuracy certificate,

min A Blz = [A— Al> = oxs1,
rank(B)<k

p
min_[|A— B} = |A—-AlF = ), o}

k(B)<k
rank(B) ekl

This is a result about low-rank matrix approximation.
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Compression and dimension reduction

Optimal low-rank approximations are often used in compressing data
representations.

Let A e R™*"™ be given, with M » 1.
SVD-based (optimal) compression of A amounts to replacing A with its rank-k
approximation,

k
A~ Ak; = Z O'j(’LLj’Uf)
j=1

Storage of A ~ Mn numbers
Storage of Ay ~ (M + n)k < Mn numbers
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Procrustes analysis
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Procrustes analysis

ErrorEp
estimation
[N 7[ LEN
As /.
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Image: lgual et al, Continuous Generalized Procrustes analysis

Procrustes analysis: “benignly” modify data set to match reference.

Image registration registration, shape analysis, uniformizing disparately scaled data
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The orthogonal Procrustes problem

Reference data: collect landmark points as columns of a matrix R.
R e IR™*™: n points in m-dimensional space.

Image: Pascoal et al, Plastic and Heritable
Components of Phenotypic Variation in Nucella lapillus: An Assessment Using Reciprocal Transplant and Common

Garden Experiments

Object data: A € R™*™ the corresponding landmarks on source object
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The orthogonal Procrustes problem

ReR™*", AeR™*".

Goal: “align” A to best fit R. Types of allowed alignments:
— translations
— rotations

— reflections
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The orthogonal Procrustes problem

ReR™*", AeR™*".

Goal: “align” A to best fit R. Types of allowed alignments:

— translations

— rotations

— reflections
Written in math: find an orthogonal matrix () over m-dimensional space so that
QA ~ R.

min |QA — R|% subject to Q'Q=QQ" = I,
QeRme

Is this problem convex?

(Mo @) — q,: -l
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The Procrustes solution

min  |[QA — RH% subject to QTQ = QQ" = I,

Solution:
— Compute the SVD of RAT = UXVT
— Solution: Q = UVT.
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The Procrustes solution

min  |[QA — RH% subject to QT Q = QQT = I,

Solution:
— Compute the SVD of RAT = UXVT
— Solution: Q = UV,

A related problem: the “closest” unitary matrix to a given A € R™*™,

min |Q — A3 subject to Q'Q =QQ" =1,

Solution: Q@ = UV?T, where A = USV7 is the SVD of A.

CC(VM""' iﬁén(rm/f?&(/u Pr’ocwg%es’ /Dmb[(le Zy/),'cm/{y O/Jﬂ'/- éW@

Ceh nice  Solufione.
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Orthogonalization

Our second factorization: QR

|dea: Given vectors a1, ...,a, € R™, orthogonalize them:
{al,...,an} —> {ql,...,qn}CRm

Such that {gx,q;) = qJTQk = Ok,;.
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Orthogonalization

Our second factorization: QR
|dea: Given vectors a1, ...,a, € R™, orthogonalize them:
{al,...,an} —> {ql,...,qn}CRm

uch that {qx, q;) = ¢; @& = k5.

The conceptually simple strategy to accomplish this: Gram-Schmidt
orthogonalization:

r1,2 = <a2,q1) T = <aj,qr), (k<j)
up = aj u2 = ag — 1,291, uj = a; — Z Tk, dk
k<j
r1,1 = |u12 r22 = |uz]2, 5.5 = lugll2
ai u2 Uy
q1 = — q = — q; = ——
r1,1 r2,2 T5,5
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The QR decomposition

Collect all these vectors into matrices: $1 62 On

| | | |
S G S

If one maintains a diary of orthogonalization operations, this is the QR

decomposition:
A=QR = ( o )(Wzézﬂ

orthn ano,/
- (@ is an ont—hg‘gnal matrix: Q1 Q = 1.

— R is an upper triangular matrix.
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Pivoting

A more powerful version of this algorithm is a pivoted one:

At step j, the standard factorization computes:

rig = |a; — >, <az, qr)ax

k<j 9

= |laj — Pg,_,a;|,, @Qj-1 =span{qi,...,qx1}
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Pivoting

A more powerful version of this algorithm is a pivoted one:

At step j, the standard factorization computes:

rig = |a; — >, <az, qr)ax

k<j 9

= |laj — Pg,_,a;|,, @Qj-1 =span{qi,...,qx1}

The pivoted QR decomposition first performs the permutation:

Ajy,Aj+1y...,As—1,0s5,As41, ... ,an_l,anL)

Q\as, Aty sy Qs—1yQfyQstlyer-yln_1,0n,
where s is chosen according to the rule,

§ = arg max Hak — PQj_lcuC H2 .
k=3,...,m
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The pivoted QR decomposition

l.e., this corresponds to a permutation of the column indices {1,...,n}.
Then there is a permutation matrix! P € R™*", such that

AP = QR,

1A permutation matrix P has the form P = [€x(1)s---»€n(n)] for some permutation map 7 of

[n]
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Combinatorial optimization

Many optimization problems take the form,

max fN(p17-"7pN)a
pla"'apNEQ

where fx is an objective function of N arguments, with ) a feasible set of options.
(I.e., an optimization problem with N choices.)
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Combinatorial optimization

Many optimization problems take the form,

max fN(p17---7pN)a
pla"'apNEQ

where fx is an objective function of N arguments, with ) a feasible set of options.
(I.e., an optimization problem with N choices.)

— fn is the traveling salesman problem path length, with N stops.

— The knapsack problem: identify IV items, where each has specifics weights and
payoffs

— The assignment problem: Divide N agents among many tasks so that the task
payoff is maximized while minimizing the agent cost

These problems are typically hard: require global optimize over N objects
simultaneously
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Greedy algorithms

One strategy to approximately solve combinatorial optimization problems: Greedy
methods.

max fN(pl)'°°7pN)7
pla"'apNeQ
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Greedy algorithms

One strategy to approximately solve combinatorial optimization problems: Greedy
methods.

max fN(p1)°°°7pN)7
pla"'apNeQ

In our languange, a greedy algorithm to approximate the solution above is:
— Choose p1 = argmax g f1(p)
— For j =2,...,N: choose p; = argmax g fi(p1,...,Pj—1,D)

Greedy algorithms (almost always) do not result in optimal solutions.

But frequently they are close to optimal.
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Pivoting and greedy algorithms

Consider the following (combinatorial) optimization problems:

S = argmaxmax laj — Pagaj|,,
Sc[n] je[n]
|S]=

S = arg max | det A% Ag]
Sc[n]
|S|=Fk
Above, Ag is the submatrix of A formed by a subset of column indices S.
Py is the orthogonal projection operator, projecting general vectors onto
range(Asg).
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Pivoting and greedy algorithms

Consider the following (combinatorial) optimization problems:

Min
S = max |la; — Pagaj|,,
c[n j€[n]
S| =F
S = arg max | det A% Ag]
Sc[n]
S| =F

Above, Ag is the submatrix of A formed by a subset of column indices S.
Py is the orthogonal projection operator, projecting general vectors onto
range(Asg).

1. Problem 1: Compute the subset of columns of A that minimizes the projection
error of projecting each column of A onto the subspace spanned by the column
subset.

2. Problem 2: Choose a column subset S that maximizes the determinant of the
Gram matrix of Ag.
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Problem 1: Minimizing residuals

&?MM
S = a max |a; — Pacajl,,
S%je[n] H J S JH2

The pivoted QR decomposition gives an approximate (but easily computable!)
solution,

AP = QR

Choosing S as the first £ columns chosen by the permutation matrix P is
equivalent to the following greedy procedure:
0 Mmin
S; = X max
s€[n] Je[n]

aj — Pag,_ a;

2, Sk={81,...,8k}.
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Problem 1: Minimizing residuals

S = argmax max |a; — Pagaj|,,
Sc[n]|S|=k J€[n]

The pivoted QR decomposition gives an approximate (but easily computable!)
solution,

AP = QR

Choosing S as the first £ columns chosen by the permutation matrix P is
equivalent to the following greedy procedure:

§; = argmax max ‘aj — PASj_laj

se[n] J€[n]

2, Sk={81,...,8k}.

This kind of problem appears exactly in

— “Structured” data reduction: approximation of large data sets by a small
number of exemplars (data coresets, matrix skeletonization)

— Scientific model reduction: columns of A are PDE solutions
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Problem 2: Determinant maximization

S = argmax |det A§Ag]
Sc[n]|S|=Fk
J

The pivoted QR decomposition gives an approximate (but easily computable!)
solution,

AP = QR

Choosing S as the first k columns chosen by the permutation matrix P is
equivalent to the following greedy procedure:
sj; = argmaxmax |det ALy A x ) Sk = {s1,...,5.}, Si =5SLu{s}.
i

s€[n] J€[n] S;k_l
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Problem 2: Determinant maximization

S = argmax |det A§Ag]
Sc[n]|S|=Fk

The pivoted QR decomposition gives an approximate (but easily computable!)
solution,

AP = QR

Choosing S as the first k columns chosen by the permutation matrix P is
equivalent to the following greedy procedure:

s; = arg max max |det Ag* A g Sk = {s1,...,5.}, Si =5SLu{s}.
se[n] J€ln] i—1 j—1

This kind of problem appears exactly in

— Optimal experimental design: A D-optimal design of experiments maximizes
the determinant of the Fisher Information Matrix.

— Function approximation: Point configuations maximizing a determinant are
Fekete points, and are excellent sites for collecting data.
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