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Optimization problems

General optimization problem:

minimize f(x)
subject to x € S C FR”
S :={z|gi(z) <0, i € [m]}

We have discussed:
— Local, global solutions

— Local optimality for unconstrained optimization: first-order necessary
conditions, second-order necessary + sufficient conditions.

— Local optimality for constrained optimization: KKT conditions, first-order
necessary conditions
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KKT example

The KKT conditions:

i€[m]
Xigi(z¥) =0, i e [m]
gi(z™) <0, i€ [m]
Ai =0, i€ [m]

Example

Sy ﬁi(x)f01 ~a o 11 R

[w{[ﬂ{lj 0N W)

(Stationarity)

(Complementary Slackness)

(Primal feasibility)
(Dual feasibility)

Let's consider the KKT conditions for the following optimization problem,

minimize f(x)

subject to x; = 0,

j € [n].
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KKT example summary

Example

Let's consider the KKT conditions for the following optimization problem,

minimize f(x)
subject to x; = 0, j € [n].

LICQ always holds. The KKT conditions for ™* are given by,
A(z*) = {i € [n] | z¥ = 0}
I(z*) = [n]\A(z™)

of _ : 8
o, =0, ieZ(x™)
of : "
o > 0, ie A(z™).

These conditions are highly suggestive of a projected gradient descent algorithm.
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Optimization problems

General optimization problem:

minimize f(x)
subject to z € S
S:={z|gi(z) <0, i € [m]}

We have discussed:
— Local, global solutions

— Local optimality for unconstrained optimization: first-order necessary
conditions, second-order necessary + sufficient conditions.

— Local optimality for constrained optimization: KKT conditions, first-order
necessary conditions
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Optimization problems

General optimization problem:

minimize f(x)
subject to z € S
S:={z|gi(z) <0, i € [m]}

We have discussed:
— Local, global solutions

— Local optimality for unconstrained optimization: first-order necessary
conditions, second-order necessary + sufficient conditions.

— Local optimality for constrained optimization: KKT conditions, first-order
necessary conditions

Generally, we cannot do better than local optimality, and the necessary vs sufficient
characterizations can be complicated.

A property that makes everything a lot cleaner and clearer: convexity.
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Convex sets

Definition
A set Sc R" is convex if, V z,y € S and ¥V X € [0, 1], then

Ax+ (1—=XA)yesS.

By CheCheDaWaff - These files were derived from: Convex polygon illustration1,2.png:, CC BY-SA 4.0,
https: //commons.wikimedia.org/w/index.php?curid=49541588,

https://commons.wikimedia.org/w/index.php?curid=49543150
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Convex sets

Definition
A set Sc R" is convex if, V z,y € S and ¥V X € [0, 1], then

Ax+ (1—=XA)yesS.

R
g

C convex
Cupot strivtly Comvty
By CheCheDaWatf - These files were derived from: Convex polygon illustration1,2.png:, CC BY-SA 4.0,
https: //commons.wikimedia.org/w/index.php?curid=49541588,
https://commons.wikimedia.org/w/index.php?curid=49543150
There are some generalized notions of convexity:
— S is strictly convex if Ax + (1 — A)y € int(S) for all A€ (0,1) and all z,y € S
with = # .
— S is absolutely convex if it is convex and balanced (S is balanced if cx € S for
all scalars ¢ satisfying |c| < 1 and all x € 5)
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Examples

Some examples of convex sets:
| — All intervals (open, closed, half-open, unbounded) on R
2 — The non-negative orthant: = € R™ with z; > 0, j € [n]

3 — Half-spaces: with (-, -) the Euclidean inner product and for any y € R™ and
a € R, the set {z € R" | {x,y) < a} is convex. The set
H(y,a) = {z € R" | {(z,y) = a} is a hyperplane.

L( — The set of positive-definite matrices in R"*"™ (or also positive semi-definite
matrices)
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Examples

Some examples of non-convex sets:

[ — Any disconnected set in R

2 — The graph of y = 1/z in R?

3 — The set of vectors z € R"™ with at most s nonzero entries (0 < s < n)

M The set of invertible/full-rank matrices in R™*"
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Convex combinations

Convexity extends to general convex combinations.

Let A™ be the unit simplex in n dimensions, i.e.,
A":={XeR"|0< A <1Vje[n], and Y A =1
j=1

S is convex if and only if all convex combinations of points in S lie in S.
le., Ve A" and z1,...,x, € .5, then

i )\jazj e S.
j=1
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Convex hulls .

]
::::::

Given a set of points S, one can consider the “filled in" version of S, where the rule
for filling in is convexity.

Definition

Let S € R". The convex hull of S is, equivalently, any of the following:
— The set of all convex combinations of points in S.
— The intersection of all convex sets containing S.
— The smallest convex set containing S (which is unique).

We write Conv(S) for the convex hull of S.

Convex halls gee convex  Sets (a

Convex hulls are a fundamental operatlkjn in computational geometry (and
statistics, and economics, and optimization, and ....).
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Cool things about convex sets

Convex sets are “nice” sets in many senses.

There are numerous neat properties a convex set S € R" obeys:

— All intersections of convex sets are convex.
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Cool things about convex sets

Convex sets are “nice” sets in many senses.

There are numerous neat properties a convex set S € R" obeys:
— All intersections of convex sets are convex.

— If S is also closed, then it can be represented as the intersection of half-spaces.
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Cool things about convex sets

Convex sets are “nice” sets in many senses.

There are numerous neat properties a convex set S € R" obeys:

— Carathéodory’s Theorem: If z € Conv(S), then there exist z1,..., 2,41 € S
and XA € A" such that,

n+1

xr = Z )\ij.
j=1

“Every point in an n-dimensional convex hull can be written as a convex
combination of as few as n + 1 points.”
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Cool things about convex sets

Convex sets are “nice” sets in many senses.

There are numerous neat properties a convex set S € R" obeys:

— Carathéodory's Theorem: If z € Conv(S), then there exist z1,

..y Zn+1 € S
and A € A" such that,

n+1

xr = Z )\ij.
j=1

“Every point in an n-dimensional convex hull can be written as a convex
combination of as few as n + 1 points.”

Extreme points of S are points not lying on any line segment inside S.

Krein-Milman Theorem: Every compact, convex set equals the convex hull of
its extreme points.
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Cool things about convex sets

Convex sets are “nice” sets in many senses.

There are numerous neat properties a convex set S € R" obeys:

— Supporting hyperplane theorem: If = is a boundary point of S, then there is a
hyperplane that (i) contains x and (ii) defines a closed half-space that entirely
contains S.
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Cool things about convex sets

Convex sets are “nice” sets in many senses.

There are numerous neat properties a convex set S € R" obeys:

— Supporting hyperplane theorem: If = is a boundary point of S, then there is a
hyperplane that (i) contains x and (ii) defines a closed half-space that entirely
contains S.

— Separating hyperplane theorem: If S,T" are two disjoint convex sets, then there
exists a hyperplane H(y, a) such that

Sc{reR" (x,y)
Tc{xeR" {x,y)

\\/ //\
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Cones and conic hulls
A closely related notion to convex sets is that of conic sets.

Definition
Aset ScR"isaconeifare Sforalla>0andxeS.
(sometimes a > 0 is required)

Cones need not be convex.

// |

O o
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Cones and conic hulls

A conic combination of points x1,..., T, € R" is the sum,

£ Rl e 2 o

j=

m
for some e R,
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Cones and conic hulls

A conic combination of points x1,..., T, € R" is the sum,
m
2 HjTj,
j=1

m
for some e R.

Definition
The conic hull, cone(.S), is either of the following equivalent sets:
— The set of all conic combinations of points in .S

— The intersection of all convex cones containing S, unioned with 0
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Convex functions

Definition
A function f : R™ — IR is convex over a convex set S if for all z,y € S and
A € [0, 1], then

fOz+ (1 =Ny) < Af(z) + (1= AN)f(y)
f is concave if —f is convex.

“The graph of f over any line segment in S lies below a secant line connecting the
graph values at the endpoints.”

< § £l - Hy)
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Convex functions

Various flavors of convexity:

— Strictly convex functions have a strict inequality above for all x # y and

Ae (0,1).
— Strongly convex functions are “at least as convex" as a definite quadratic
function: 9

FO+ (1= Ny) < Af(@) + (1= N F) —mA1 - Nz — yll2, Ym > 0

There's also quasiconvexity, pseudoconvexity, ... V /Jf-[d; U

\/ S‘H"Tdb conve f{x)’CXLf nol gﬁm,&{y_

cnve x
__— COMVP, Yt o Sfﬂtf’la
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Examples: Convex functions

The following are examples of convex functions:
— x +— ||| for any valid norm | - ||

- f(@) = 22 f(z) = || / V

— f(z) = a’ = + b (affine functions)

- f(x) = log (Z;L:1 exp(xj)> (“LogSumExp", whose gradient is the softmax

function)
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Examples: Convex functions l= 4,

The following are examples of non-convex functions:

— f(x) = logx (concave)

- f@) =2t —a3  (sadde F+@ ')(:(Olo))

- f(z) = (Z?zl |zcj|p> v for 0 < p < 1 (47 "quasinorm”)
— f(A) = det A for n x n matrices A
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Convexity-preserving operations

Complicated convex functions can be build from simple ones using some properties.

— Conic combinations of convex functions are convex
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Convexity-preserving operations

Complicated convex functions can be build from simple ones using some properties.
— Conic combinations of convex functions are convex

— The (multivariate) maximum of convex function is convex: sup . 4 fa(x) is
convex if f, is convex for each a. (A car b dscale or Q Ontnum)
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Convexity-preserving operations

Complicated convex functions can be build from simple ones using some properties.
— Conic combinations of convex functions are convex

— The (multivariate) maximum of convex function is convex: sup . 4 fa(x) is
convex if f, is convex for each a.

— Compositions with affine maps: If f is convex and ¢(z) = Az + b, then
f(¢p(x)) is convex. (Is ¢(f(x)) convex for ¢ affine and f convex?)

Oly)=-
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Convexity-preserving operations

Complicated convex functions can be build from simple ones using some properties.
— Conic combinations of convex functions are convex

— The (multivariate) maximum of convex function is convex: sup . 4 fa(x) is
convex if f, is convex for each a.

— Compositions with affine maps: If f is convex and ¢(z) = Az + b, then

f(¢p(x)) is convex. (Is ¢(f(x)) convex for ¢ affine and f convex?)

— Compositions of certain convex functions: If f: R"™ - R and g: IR — R are
both convex, and g is non-decreasing, then g(f(x)) is convex.
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Equivalent characterizations of convexity

Sometimes alternative formulations of convexity are easier/simpler to show.

Theorem
Assume f € C*(S) with S an open set. Then the following are equivalent:

— f is convex over S.
— (Gradient inequality) f(y) = f(z) + Vf(x)" (y — ) forall z,y € S
— (Definite Hessian) V*f(x) > 0 for all z € S

ﬂ:p
f tamont plue o ﬂﬁpk o X

[ R
¢
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Cool things about convex functions ,(7[)

Like convex sets, convex functions are “nice” sets in many se ///////

Let f: R"™ — R be convex: }‘
— It's epigraph, i.e., the set of points, — ¥

epi(f) = {z = (z,9) e R"" |y = f(a)},

is a convex set. (Convexity of epi(f) also implies convexity of f.)
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Cool things about convex functions

Like convex sets, convex functions are “nice”’ sets in many senses.

Let f: R"™ — R be convex:
— It's epigraph, i.e., the set of points,

epi(f) = {z = (z,9) e R"" |y = f(a)},

is a convex set. (Convexity of epi(f) also implies convexity of f.)

— Sublevel sets of f, i.e., sets of the form,
f7H((=0,a]) = {z e R" | f(x) <a}, [ ((—w,a)) ={zeR"| f(z)<a},

for arbitrary a € R are convex.
(Functions whose sublevel sets are convex are quasiconvex, but need not be

convex.)

fﬂx)?&/ S Zuﬁgl Convey [0, %) WA (may
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Cool things about convex functions

Like convex sets, convex functions are “nice”’ sets in many senses.

Let f: R"™ — R be convex:
Jensen's inequality is a convex function property for general convex combinations.

Theorem (Jensen's inequality)

If f is a convex function, then for any x1,...,x., and A € A™, we have,

Fl D Ams | < D) Aif()).
j=1 j=1
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Cool things about convex functions

Like convex sets, convex functions are “nice”’ sets in many senses.

Let f: R"™ — R be convex:
Jensen's inequality is a convex function property for general convex combinations.

Theorem (Jensen's inequality)

If f is a convex function, then for any x1,...,x., and A € A™, we have,

Fl D Ams | < D) Aif()).
j=1 j=1

Jensen's inequality also applies to “infinite sums”, i.e., integrals,

f([at@rae) < [ ooz

where f is convex and g is integrable.
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Cool things about convex functions

Like convex sets, convex functions are “nice”’ sets in many senses.

Let f: R"™ — R be convex: A particularly salient result about convexity:

Theorem

Assume [ is convex over (a convex set) S. If x* is a local minimum of f over S,
then it is a global minimum of f over S.

l.e., local and global minimizers are equivalent notions for convex functions.
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Back to optimization!

General optimization problem:

minimize f(z)
subject to x € S
S :={z|gi(z) <0, i € [m]}

Definition
The above is a convex optimization problem if f is convex over the convex set S.

( Convexity results in strong statements about optimality.

(Mrs wont g, bl coox for a/(i)
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Convex optimization

minimize f(x)
subject to z € S
S:={z|gi(z) <0, i e [m]}

Theorem (Convexity of optimal sets)

Assume the above is a convex optimization problem. Then the set of minimizers,
argmin f = {z € S ‘ flx) < fly) Vye S}
S

IS a convex set.
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Convex optimization

minimize f(x)
subject to z € S
S:={z|gi(z) <0, i e [m]}

Theorem (Unconstrained optimization)

Assume the above is a convex optimization problem with S = R™ and f € C*(R").
Then x* is a stationary point of f if and only if ™ is a global minimizer of f.

V\[( )=D &7 )(E dJ‘JﬁVHV\ fx)
€3

Pawf: UFlx)=0
F(x) 2 1y¥) ¢ ) et ) = [
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Convex optimization

minimize f(x)
subject to z € S
S:={z|gi(z) <0, i e [m]}

Theorem (Constrained optimization, sufficiency)

Assume the above is a convex optimization problem and f,g; € C*(R™). Then if
x* is a KKT point, it is a global minimizer.

Note: the above assumes no constraint qualifications.
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Convex optimization

minimize f(x)
subject to z € S
S:={z|gi(z) <0, i e [m]}

We need some additional assumption for necessity. We say that the problem
above satisfies Slater’s condition if 3 = € S such that g;(z) < 0 for all i € [m].

Theorem (Constrained optimization, necessity)

Assume the above is a convex optimization problem satisfying Slater’s condition,
and that f,g; € C*(S). Then x* is a KKT point if and only if it is a global
optimizer.

Note: Slater’s condition doesn't require a priori knowledge of KKT points.

A. Narayan (U. Utah — Math/SClI) Convexity



Summary

For optimization problems, convexity results in,
— Convexity of optimal sets

— Sufficiency (and typically necessity) of local optimality conditions
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