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Optimization problems

General optimization problem:

minimize fpxq
subject to x P S

S :“  
x

ˇ̌
gipxq § 0, i P rms(

We have discussed:
– Local, global solutions
– Local optimality for unconstrained optimization: first-order necessary

conditions, second-order necessary + sufficient conditions.
– Local optimality for constrained optimization: KKT conditions, first-order

necessary conditions
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KKT example

The KKT conditions:

rfpx˚q `
ÿ

iPrms
�irgipx˚q “ 0 (Stationarity)

�igipx˚q “ 0, i P rms (Complementary Slackness)

gipx˚q § 0, i P rms (Primal feasibility)
�i • 0, i P rms (Dual feasibility)

Example
Let’s consider the KKT conditions for the following optimization problem,

minimize fpxq
subject to xj • 0, j P rns.
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KKT example summary

Example
Let’s consider the KKT conditions for the following optimization problem,

minimize fpxq
subject to xj • 0, j P rns.

LICQ always holds. The KKT conditions for x˚ are given by,

Apx˚q “  
i P rns

ˇ̌
x

˚
i “ 0

(

Ipx˚q “ rnszApx˚q
Bf
Bxi

“ 0, i P Ipx˚q
Bf
Bxi

• 0, i P Apx˚q.

These conditions are highly suggestive of a projected gradient descent algorithm.

A. Narayan (U. Utah – Math/SCI) Convexity



Optimization problems

General optimization problem:

minimize fpxq
subject to x P S

S :“  
x

ˇ̌
gipxq § 0, i P rms(

We have discussed:
– Local, global solutions
– Local optimality for unconstrained optimization: first-order necessary

conditions, second-order necessary + sufficient conditions.
– Local optimality for constrained optimization: KKT conditions, first-order

necessary conditions
Generally, we cannot do better than local optimality, and the necessary vs sufficient
characterizations can be complicated.

A property that makes everything a lot cleaner and clearer: convexity.
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Convex sets

Definition
A set S Ä n is convex if, @ x, y P S and @ � P r0, 1s, then

�x ` p1 ´ �qy P S.

By CheCheDaWaff - These files were derived from: Convex polygon illustration1,2.png:, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=49541588,

https://commons.wikimedia.org/w/index.php?curid=49543150

There are some generalized notions of convexity:
– S is strictly convex if �x ` p1 ´ �qy P intpSq for all � P p0, 1q and all x, y P S

with x ‰ y.
– S is absolutely convex if it is convex and balanced (S is balanced if cx P S for

all scalars c satisfying |c| § 1 and all x P S)
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Examples

Some examples of convex sets:
– All intervals (open, closed, half-open, unbounded) on
– The non-negative orthant: x P n with xj • 0, j P rns
– Half-spaces: with x¨, ¨y the Euclidean inner product and for any y P n and

a P , the set
 
x P n

ˇ̌
xx, yy § a

(
is convex. The set

Hpy, aq “  
x P n

ˇ̌
xx, yy “ a

(
is a hyperplane.

– The set of positive-definite matrices in nˆn (or also positive semi-definite
matrices)
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Examples

Some examples of non-convex sets:
– Any disconnected set in
– The graph of y “ 1{x in 2

– The set of vectors x P n with at most s nonzero entries (0 † s † n)
– The set of invertible/full-rank matrices in nˆn
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Convex combinations

Convexity extends to general convex combinations.

Let �n be the unit simplex in n dimensions, i.e.,

�n :“
#
� P n

ˇ̌
0 § �j § 1 @ j P rns, and

nÿ

j“1

�j “ 1

+

S is convex if and only if all convex combinations of points in S lie in S.
I.e., @ � P �n and x1, . . . , xn P S, then

nÿ

j“1

�jxj P S.
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Convex hulls

Given a set of points S, one can consider the “filled in” version of S, where the rule
for filling in is convexity.

Definition
Let S P n. The convex hull of S is, equivalently, any of the following:

– The set of all convex combinations of points in S.
– The intersection of all convex sets containing S.
– The smallest convex set containing S (which is unique).

We write ConvpSq for the convex hull of S.

Convex hulls are a fundamental operation in computational geometry (and
statistics, and economics, and optimization, and ....).
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Cool things about convex sets

Convex sets are “nice” sets in many senses.

There are numerous neat properties a convex set S Ñ n obeys:
– All intersections of convex sets are convex.
– If S is also closed, then it can be represented as the intersection of half-spaces.
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Cool things about convex sets

Convex sets are “nice” sets in many senses.

There are numerous neat properties a convex set S Ñ n obeys:
– Carathéodory’s Theorem: If x P ConvpSq, then there exist z1, . . . , zn`1 P S

and � P �n`1 such that,

x “
n`1ÿ

j“1

�jzj .

“Every point in an n-dimensional convex hull can be written as a convex
combination of as few as n ` 1 points.”

– Extreme points of S are points not lying on any line segment inside S.
Krein-Milman Theorem: Every compact, convex set equals the convex hull of
its extreme points.
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Cool things about convex sets

Convex sets are “nice” sets in many senses.

There are numerous neat properties a convex set S Ñ n obeys:
– Supporting hyperplane theorem: If x is a boundary point of S, then there is a

hyperplane that (i) contains x and (ii) defines a closed half-space that entirely
contains S.

– Separating hyperplane theorem: If S, T are two disjoint convex sets, then there
exists a hyperplane Hpy, aq such that

S Ñ tx P n xx, yy § au
T Ñ tx P n xx, yy • au .
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Cones and conic hulls

A closely related notion to convex sets is that of conic sets.

Definition
A set S Ä n is a cone if ax P S for all a ° 0 and x P S.
(sometimes a • 0 is required)

Cones need not be convex.
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Cones and conic hulls

A conic combination of points x1, . . . , xm P n is the sum,
mÿ

j“1

µjxj ,

for some µ P m
` .

Definition
The conic hull, conepSq, is either of the following equivalent sets:

– The set of all conic combinations of points in S

– The intersection of all convex cones containing S, unioned with 0
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Convex functions

Definition
A function f : n Ñ is convex over a convex set S if for all x, y P S and
� P r0, 1s, then

fp�x ` p1 ´ �qyq § �fpxq ` p1 ´ �qfpyq

f is concave if ´f is convex.

“The graph of f over any line segment in S lies below a secant line connecting the
graph values at the endpoints.”
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Convex functions

Various flavors of convexity:
– Strictly convex functions have a strict inequality above for all x ‰ y and

� P p0, 1q.
– Strongly convex functions are “at least as convex" as a definite quadratic

function:

fp�x ` p1 ´ �qyq § �fpxq ` p1 ´ �qfpyq ´ m�p1 ´ �q||x ´ y||22, m ° 0

There’s also quasiconvexity, pseudoconvexity, ...
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Examples: Convex functions

The following are examples of convex functions:
– x fiÑ }x} for any valid norm } ¨ }
– fpxq “ x

2, fpxq “ |x|
– fpxq “ a

T
x ` b (affine functions)

– fpxq “ log
´∞n

j“1 exppxjq
¯

(“LogSumExp”, whose gradient is the softmax
function)

A. Narayan (U. Utah – Math/SCI) Convexity



Examples: Convex functions

The following are examples of non-convex functions:
– fpxq “ log x (concave)
– fpxq “ x

2
1 ´ x

2
2

– fpxq “
´∞n

j“1 |xj |p
¯1{p

for 0 † p † 1 (`p “quasinorm”)

– fpAq “ detA for n ˆ n matrices A
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Convexity-preserving operations

Complicated convex functions can be build from simple ones using some properties.
– Conic combinations of convex functions are convex
– The (multivariate) maximum of convex function is convex: supaPA fapxq is

convex if fa is convex for each a.
– Compositions with affine maps: If f is convex and �pxq “ Ax ` b, then

fp�pxqq is convex. (Is �pfpxqq convex for � affine and f convex?)
– Compositions of certain convex functions: If f : n Ñ and g : Ñ are

both convex, and g is non-decreasing, then gpfpxqq is convex.
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Equivalent characterizations of convexity

Sometimes alternative formulations of convexity are easier/simpler to show.

Theorem
Assume f P C

2pSq with S an open set. Then the following are equivalent:
– f is convex over S.
– (Gradient inequality) fpyq • fpxq ` rfpxqT py ´ xq for all x, y P S

– (Definite Hessian) r2
fpxq © 0 for all x P S
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Cool things about convex functions

Like convex sets, convex functions are “nice” sets in many senses.

Let f : n Ñ be convex:
– It’s epigraph, i.e., the set of points,

epipfq :“  
z “ px, yq P n`1

ˇ̌
y • fpxq(

,

is a convex set. (Convexity of epipfq also implies convexity of f .)
– Sublevel sets of f , i.e., sets of the form,

f
´1 pp´8, asq “  

x P n
ˇ̌
fpxq § a

(
, f

´1 pp´8, aqq “  
x P n

ˇ̌
fpxq † a

(
,

for arbitrary a P are convex.
(Functions whose sublevel sets are convex are quasiconvex, but need not be
convex.)
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Cool things about convex functions

Like convex sets, convex functions are “nice” sets in many senses.

Let f : n Ñ be convex:
Jensen’s inequality is a convex function property for general convex combinations.

Theorem (Jensen’s inequality)

If f is a convex function, then for any x1, . . . , xm and � P �m, we have,

f

˜
mÿ

j“1

�jxj

¸
§

mÿ

j“1

�jfpxjq.

Jensen’s inequality also applies to “infinite sums”, i.e., integrals,

f

ˆª
gpxqdx

˙
§

ª
fpgpxqqdx,

where f is convex and g is integrable.
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Cool things about convex functions

Like convex sets, convex functions are “nice” sets in many senses.

Let f : n Ñ be convex: A particularly salient result about convexity:

Theorem
Assume f is convex over (a convex set) S. If x˚ is a local minimum of f over S,
then it is a global minimum of f over S.

I.e., local and global minimizers are equivalent notions for convex functions.

A. Narayan (U. Utah – Math/SCI) Convexity



Back to optimization!

General optimization problem:

minimize fpxq
subject to x P S

S :“  
x

ˇ̌
gipxq § 0, i P rms(

Definition
The above is a convex optimization problem if f is convex over the convex set S.

Convexity results in strong statements about optimality.
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Convex optimization

minimize fpxq
subject to x P S

S :“  
x

ˇ̌
gipxq § 0, i P rms(

Theorem (Convexity of optimal sets)

Assume the above is a convex optimization problem. Then the set of minimizers,

argmin
S

f “  
x P S

ˇ̌
fpxq § fpyq @ y P S

(

is a convex set.
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Convex optimization

minimize fpxq
subject to x P S

S :“  
x

ˇ̌
gipxq § 0, i P rms(

Theorem (Unconstrained optimization)

Assume the above is a convex optimization problem with S “ n and f P C
1p nq.

Then x
˚ is a stationary point of f if and only if x˚ is a global minimizer of f .

A. Narayan (U. Utah – Math/SCI) Convexity



Convex optimization

minimize fpxq
subject to x P S

S :“  
x

ˇ̌
gipxq § 0, i P rms(

Theorem (Constrained optimization, sufficiency)

Assume the above is a convex optimization problem and f, gi P C
1p nq. Then if

x
˚ is a KKT point, it is a global minimizer.

Note: the above assumes no constraint qualifications.
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Convex optimization

minimize fpxq
subject to x P S

S :“  
x

ˇ̌
gipxq § 0, i P rms(

We need some additional assumption for necessity. We say that the problem
above satisfies Slater’s condition if D x P S such that gipxq † 0 for all i P rms.

Theorem (Constrained optimization, necessity)

Assume the above is a convex optimization problem satisfying Slater’s condition,
and that f, gi P C

1pSq. Then x
˚ is a KKT point if and only if it is a global

optimizer.

Note: Slater’s condition doesn’t require a priori knowledge of KKT points.

A. Narayan (U. Utah – Math/SCI) Convexity



Summary

For optimization problems, convexity results in,
– Convexity of optimal sets
– Sufficiency (and typically necessity) of local optimality conditions
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