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“Prerequisites”

Several topics are background for this course:
(Numerical) linear algebra
Probability/statistics
“Basic” optimization knowledge

We’ll spend some time briefly reviewing portions of these.
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Optimization

General optimization problem:

minimize fpxq
subject to x P S

S :“  
x

ˇ̌
gipxq § 0, i P rms(

x “ px1, . . . , xnqT P n is the optimization or design variable
f : n Ñ is the objective function
gi :

n Ñ , i P rms, are the constraints

S is the feasible set
We will always consider n † 8, but we will occasionally allow m Ò 8
If m ° 0, the problem is constrained; otherwise it is unconstrained
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Optimization

General optimization problem:

minimize fpxq
subject to x P S

S :“  
x

ˇ̌
gipxq § 0, i P rms(

Solutions to optimization problems have their own taxonomy and properties:
A point x P n is feasible if x P S.
A point x˚ P n is a (“global”) solution, optimum, or optimal point if
fpx˚q § fpxq for every x P S.
A point x˚ P n is a “local” solution, optimum, or optimal point if D✏ ° 0
such that fpx˚q § fpxq for all x P B✏px˚q X S, where

B✏px˚q X S :“  
x P S

ˇ̌
}x ´ x˚} † ✏

(
.
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Optimization

General optimization problem:

minimize fpxq
subject to x P S

S :“  
x

ˇ̌
gipxq § 0, i P rms(

Solutions to optimization problems have their own taxonomy and properties:
“Optimum”/“extremum” –Ñ “maximum”/“minimum”, as appropriate
Maximization of f is minimization of ´f

Optimization problems can have zero, one, or many solutions. Which of these
is true is rarely obvious.

Generally our goal is to find/compute an optimal solution. A local one could
suffice.
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Simple examples

Example
One, unique solution

min
xP

|x|
subject to x • ´1

Example
No solutions – infeasible

min
xP

x2

subject to |x| § ´1
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Simple examples

Example
No solutions – unbounded

max
xP

x2

Example
Many solutions

min
xP

sinx

subject to |x| • ⇡
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Ascertaining optimality

In some special cases, with some effort, one can conclude global optimality.
Direct methods – Analytically prove global optimality. (E.g.,
fpxq “ px2 ´ 1q10)
Quadratic functions – f is quadratic with a positive-definite Hessian.
Coercive functions – Global optimality in some ball B, and show that that f
outside B dominates f inside B.
Globally convex functions – Ensures that local minima are global minima.

Caveats:
All the above are “easier” for unconstrained optimization, and become much
more technical and difficult for constrained optimization.
Global optimality requires some global knowledge of the objective and
constraints.
In high dimensions (n large), globally certifying any property of generic
functions is hard.

The depressing fact of life: without relatively strong assumptions, local optimality is
the best we know how to establish.
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Local optimality

There are a handful of optimality conditions that can be sufficient and/or necessary
to determine local optimality.

First-order optimality conditions – conditions involving the gradients of f
and/or gi.
Second-order optimality conditions – conditions involving Hessians. Less
computationally useful due to complexity/storage requirements.

It’s much easier to discuss these conditions for unconstrained optimization first.
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First-order local optimality: unconstrained optimization

Unconstrained optimization:

minimize fpxq,

which implicitly allows x P n. (I.e., the feasible set is S “ n.)

The simplest first-order local optimality condition is a necessary one.

Theorem
If f P C1p nq, then x˚

is a local minimum only if rfpx˚q “ 0.

Proof.
Fix i P rns. Let xi be free, but fix xzi “ x˚

zi.
The resulting one-dimensional function fi must have a local minimum at xi “ x˚

i ,
where its univariate derivative vanishes.
Repeat for every i ùñ rfpx˚q “ 0.
Notes:

rfpx˚q “ 0 is not sufficient to conclude anything.
rfpx˚q “ 0 is also a necessary condition for local minimization over S Ä n

so long as x˚ P intpSq.

A. Narayan (U. Utah – Math/SCI) Review



First-order local optimality: unconstrained optimization

Unconstrained optimization:

minimize fpxq,

which implicitly allows x P n. (I.e., the feasible set is S “ n.)

The simplest first-order local optimality condition is a necessary one.

Theorem
If f P C1p nq, then x˚

is a local minimum only if rfpx˚q “ 0.

Proof.
Fix i P rns. Let xi be free, but fix xzi “ x˚

zi.
The resulting one-dimensional function fi must have a local minimum at xi “ x˚

i ,
where its univariate derivative vanishes.
Repeat for every i ùñ rfpx˚q “ 0.
Notes:

rfpx˚q “ 0 is not sufficient to conclude anything.
rfpx˚q “ 0 is also a necessary condition for local minimization over S Ä n

so long as x˚ P intpSq.

A. Narayan (U. Utah – Math/SCI) Review



First-order local optimality: unconstrained optimization

Unconstrained optimization:

minimize fpxq,

which implicitly allows x P n. (I.e., the feasible set is S “ n.)

The simplest first-order local optimality condition is a necessary one.

Theorem
If f P C1p nq, then x˚

is a local minimum only if rfpx˚q “ 0.

Proof.
Fix i P rns. Let xi be free, but fix xzi “ x˚

zi.
The resulting one-dimensional function fi must have a local minimum at xi “ x˚

i ,
where its univariate derivative vanishes.
Repeat for every i ùñ rfpx˚q “ 0.
Notes:

rfpx˚q “ 0 is not sufficient to conclude anything.
rfpx˚q “ 0 is also a necessary condition for local minimization over S Ä n

so long as x˚ P intpSq.

A. Narayan (U. Utah – Math/SCI) Review



Stationary points and definite matrices

Given f : n Ñ that is differentiable, a point x satisfying rfpxq “ 0 is a
stationary point.

Stationary points can be local/global minima.
Stationary points can be local/global maxima.
Stationary points can be saddle points (neither a maximum nor a minimum).

Many computational methods attempt to compute stationary points, even if we
can’t classify the result.

Stationary points are not necessarily easy to compute....
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Definite matrices

Quadratic classification of matrices are needed for second-order conditions:
A symmetric matrix A P nˆn is positive definite if xTAx ° 0 for every
x P nzt0u.
We write A ° 0.
(Equivalently, the inequality holds for all x with unit norm.)
A symmetric matrix A P nˆn is positive semi-definite if xTAx • 0 for every
x P nzt0u.
We write A © 0.
Similar definitions for negative definite, and negative semi-definite. (A † 0,
A ® 0, respectively)
Matrices that are not positive/negative definite are indefinite.

We will, in particular, utilize these characterizations for Hessian matrices, r2f .
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Second-order local optimality: unconstrained optimization

Unconstrained optimization:

minimize fpxq,

An initial, necessary second-order condition:

Theorem
Assume f P C2p nq. If x˚

is a local minimum, then rf2px˚q © 0.

Proof sketch.
Take second-order Taylor expansion of f around x˚,

fpxq « fpx˚q ` rfpx˚qT px ´ x˚q ` 1
2

px ´ x˚qTr2fpx˚qpx ´ x˚q.

x˚ must be a stationary point for f , and the above holds for all x sufficiently close
to x˚.
As before, this necessary condition holds if x˚ is in the interior of a feasible set for a
constrained optimization problem.
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Sufficient second-order optimality

Unconstrained optimization:

minimize fpxq,

Theorem
Assume f P C2p nq. If x˚

is a stationary point for f and rf2px˚q ° 0, then x˚
is

a local minimum.

Proof sketch.
Another second-order Taylor expansion of f for x close to x˚:

fpxq « fpx˚q ` rfpx˚qT px ´ x˚q ` 1
2

px ´ x˚qTr2fpx˚qpx ´ x˚q.

x˚ is a stationary point for f , and px ´ x˚qTr2fpx˚qpx ´ x˚q ° 0.
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Optimality for constrained optimization

Constrained optimization:

minimize fpxq
subject to x P S

S :“  
x

ˇ̌
gipxq § 0, i P rms(

One major complication with constrained vs. unconstrained optimization: local
optima on the boundary of the feasible set must be handled with care.

Given a local optimum x˚, we divide rms into active and inactive constraint sets:
Apx˚q “  

i P rms
ˇ̌
gipxq “ 0

(

Ipx˚q “  
i P rms

ˇ̌
gipxq † 0

(

No feasible descent: at a local minimum x˚, we cannot find a direction for travel
that simultaneously decreases f and all element of gApx˚q.
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Constraint qualification

minimize fpxq
subject to x P S

S :“  
x

ˇ̌
gipxq § 0, i P rms(

To state (useful versions of) first-order optimality, we require an additional concept.

A local minimum x˚ satisfies the linear independence constraint qualification
(LICQ) condition if

 
rgipx˚q(

iPApx˚q ,

is a collection of linearly independent vectors.

The LICQ condition is used to strengthen necessary local optimality conditions.
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Constrained optimization: first-order optimality

minimize fpxq
subject to x P S

S :“  
x

ˇ̌
gipxq § 0, i P rms(

Theorem (Karush-Kuhn-Tucker)
Assume both f and gi are C1pSq for every i P rms. Assume x˚

is a local minimum

of the above optimization problem that satisfies the LICQ condition. Then there

exists a � P m
such that px˚,�q satisfies,

rfpx˚q `
ÿ

iPrms
�irgipx˚q “ 0 (Stationarity)

�igipx˚q “ 0, i P rms (Complementary Slackness)

gipx˚q § 0, i P rms (Primal feasibility)
�i • 0, i P rms (Dual feasibility)

The above are called the KKT conditions, and any point px,�q satisfying these
conditions (even if x is not a local minimum) is a KKT point.
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KKT conditions proof idea

One proof of the KKT conditions is a combination of three ideas/techniques:
No feasible descent: We cannot find any direction d P n such that all the
following hold:

rfpx˚qTd † 0

rgipx˚qTd † 0, i P Apx˚q

Theorems of the alternative: If there does not exist a d satisfying the above,
then there must exist a � P m`1 with positive components satisfying

�0rfpx˚q `
ÿ

iPApx˚q
�irgipx˚q “ 0, �i “ 0, i P Ipx˚q

In particular, the above exercises Gordan’s Theorem of the alternative.
Constraint qualification: Under LICQ, we can set �0 “ 1 without loss.
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KKT conditions

minimize fpxq
subject to x P S

S :“  
x

ˇ̌
gipxq § 0, i P rms(

The KKT conditions
are necessary first-order optimality conditions
are a lot more complicated than unconstrained optimization conditions
extend to equality constraints (associated dual inequality constraints are always
active)
are also necessary with other (typically weaker) types of constraint qualification
technically don’t require constraint qualification (Fritz-John conditions), but
this makes them less useful
are really only explicitly used to analytically solve problems, but serve as the
basis for some algorithms
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