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The Fourier transform L10-501

Given a function f(z) defined on the real line, —c0 < & < o0, the Fourier transform
of f is defined as

F{f}w) = F(w) = % f fla)e'rda, —® < w< .

Given a function F'(w) defined on the real line, —c0 < w < 0, the inverse Fourier
transform of F is defined as

FYF}(x) J F(w)e ™" dw, —0 < T < 0.

We will now use the Fourier transform to solve PDEs on infinite domains.

MATH 3150-002 — U. Utah PDEs on infinite domains



The heat equation L10-502

Using the Fourier transform, compute the solution to the PDE,

ur = kuga, t>0, —0<x <O

u(z,0) = f(x).
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The heat kernel, | L10-S03

The function,

is called the heat kernel.
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The heat kernel, | L10-S03

The function,

ha,t) = —— ( s )

z,t) = exp | ———

’ Vamkt P\ et

is called the heat kernel.

From the previous example, the solution to the heat equation is simply written:

u(z,t) = f(x) = h(z,t),

where the convolution is taken over the = variable.
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The heat kernel, Il L10-S04

Note that the heat kernel is actually a particular solution to the heat equation.

Example

Show that the solution u(z,t) to us = kug. with initial data u(z,0) = §(z) is the
heat kernel u(zx,t) = h(z,t).
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The heat kernel, Il L10-S04

Note that the heat kernel is actually a particular solution to the heat equation.

Example

Show that the solution u(z,t) to us = kug. with initial data u(z,0) = §(z) is the
heat kernel u(zx,t) = h(z,t).

The heat kernel is an example of a broader class of solutions.
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The heat kernel, 111 L10-S05

Suppose L is a linear differential operator (in both = and t), and that L is
first-order in ¢.
Let g(xz,t) be the solution to the PDE with Dirac mass initial data,

Lg=0, t>0, —0<zx<©
q(z,0) = 6().

Such solutions ¢ are also sometimes called fundamental solutions or impulse
responses.

IfL =2 — 2 then q(x,t) is the heat kernel h(z,t).

ot ox2
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The heat kernel, 111 L10-S05

Suppose L is a linear differential operator (in both = and t), and that L is
first-order in ¢.
Let g(xz,t) be the solution to the PDE with Dirac mass initial data,

Lg=0, t>0, —0<zx<©
q(z,0) = 6().

Such solutions ¢ are also sometimes called fundamental solutions or impulse
responses.

If L = ? — aa then g(z,t) is the heat kernel h(z,t).

Example
With the notation above, show that the solution u to the PDE

Lu =0, t>0, —0o<x<0
u(z,0) = f(x)

is given by u = f * g, where the convolution is taken over the = variable.
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The wave equation L10-506

Using the Fourier transform, compute the solution to the PDE,

utt:CQUxam t>0, —0o<x<
ou
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The wave equation

Using the Fourier transform, compute the solution to the PDE,

utt=02um, t>0, —0o<x<
ou

Specialize the solution above to the case g = 0.

L10-S06

g(z).
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L10-S07

Other PDEs
Using the Fourier transform, compute the solution to the PDE,
Ut = CUg, t>0, —0o<xz<w
u(z,0) = f(),
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