PDEs on infinite domains

MATH 3150 Lecture 10

April 20, 2021

Haberman 5th edition: Section 10.4

The Fourier transform

Given a function f(x) defined on the real line, $-\infty < x < \infty$, the Fourier transform of f is defined as

$$\mathcal{F}{f}(\omega) = F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{i\omega x} dx, \qquad -\infty < \omega < \infty.$$

Given a function $F(\omega)$ defined on the real line, $-\infty < \omega < \infty$, the inverse Fourier transform of F is defined as

$$\mathcal{F}^{-1}{F}(x) = f(x) = \int_{-\infty}^{\infty} F(\omega)e^{-i\omega x}d\omega, \qquad -\infty < x < \infty.$$

We will now use the Fourier transform to solve PDEs on infinite domains.

The heat equation

Using the Fourier transform, compute the solution to the PDE,

$$u_t = k u_{xx},$$
 $t > 0, -\infty < x < \infty$
 $u(x,0) = f(x).$

The function,

$$h(x,t) = \frac{1}{\sqrt{4\pi kt}} \exp\left(-\frac{x^2}{4kt}\right)$$

is called the heat kernel.

The heat kernel, I

The function,

$$h(x,t) = \frac{1}{\sqrt{4\pi kt}} \exp\left(-\frac{x^2}{4kt}\right)$$

is called the heat kernel.

From the previous example, the solution to the heat equation is simply written:

$$u(x,t) = f(x) * h(x,t),$$

where the convolution is taken over the x variable.

The heat kernel, II

Note that the heat kernel is actually a particular solution to the heat equation.

Example

Show that the solution u(x,t) to $u_t=ku_{xx}$ with initial data $u(x,0)=\delta(x)$ is the heat kernel u(x,t)=h(x,t).

The heat kernel, II

Note that the heat kernel is actually a particular solution to the heat equation.

Example

Show that the solution u(x,t) to $u_t=ku_{xx}$ with initial data $u(x,0)=\delta(x)$ is the heat kernel u(x,t)=h(x,t).

The heat kernel is an example of a broader class of solutions.

Suppose L is a linear differential operator (in both x and t), and that L is first-order in t.

Let q(x,t) be the solution to the PDE with Dirac mass initial data,

$$Lq = 0, \qquad \qquad t > 0, \ -\infty < x < \infty$$

$$q(x,0) = \delta(x).$$

Such solutions $\it q$ are also sometimes called $\it fundamental$ $\it solutions$ or $\it impulse$ $\it responses$.

If
$$L=rac{\partial}{\partial t}-rac{\partial^2}{\partial x^2}$$
, then $q(x,t)$ is the heat kernel $h(x,t).$

Suppose L is a linear differential operator (in both x and t), and that L is first-order in t.

Let q(x,t) be the solution to the PDE with Dirac mass initial data,

$$Lq = 0,$$
 $t > 0, -\infty < x < \infty$ $q(x,0) = \delta(x).$

Such solutions q are also sometimes called *fundamental solutions* or *impulse responses*.

If
$$L=rac{\partial}{\partial t}-rac{\partial^2}{\partial x^2}$$
, then $q(x,t)$ is the heat kernel $h(x,t).$

Example

With the notation above, show that the solution u to the PDE

$$Lu = 0,$$
 $t > 0, -\infty < x < \infty$
 $u(x, 0) = f(x)$

is given by u = f * q, where the convolution is taken over the x variable.

The wave equation

Using the Fourier transform, compute the solution to the PDE,

$$u_{tt} = c^2 u_{xx},$$
 $t > 0, -\infty < x < \infty$
 $u(x,0) = f(x),$ $\frac{\partial u}{\partial t}(x,0) = g(x).$

The wave equation

Using the Fourier transform, compute the solution to the PDE,

$$u_{tt} = c^2 u_{xx},$$
 $t > 0, -\infty < x < \infty$
 $u(x,0) = f(x),$ $\frac{\partial u}{\partial t}(x,0) = g(x).$

Specialize the solution above to the case g=0.

Using the Fourier transform, compute the solution to the PDE,

$$u_t = c u_x,$$
 $t > 0, -\infty < x < \infty$
 $u(x,0) = f(x),$