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Fourier transform properties

MATH 3150 Lecture 09

April 13, 2021

Haberman 5th edition: Sections 10.3, 10.4
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L09-S01The Fourier transform

Given a function fpxq defined on the real line, ´8 † x † 8, the Fourier transform

of f is defined as

Ftfup!q “ F p!q “ 1
2⇡

ª 8

´8
fpxqei!xdx, ´8 † ! † 8.

Given a function F p!q defined on the real line, ´8 † ! † 8, the inverse Fourier

transform of F is defined as

F´1tF upxq “ fpxq “
ª 8

´8
F p!qe´i!xd!, ´8 † x † 8.

We will spend some time learning about properties of this transform.
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L09-S02Gaussian invariance

A function of the form fpxq “ expp´x2q is called a Gaussian.

We’ve seen that

F
"
exp

ˆ
´ x2

4�

˙*
“

c
�
⇡
expp´�!2q.

Thus, the Fourier transform of a Gaussian is another Gaussian.

Moreover,

functions that are very concentated in physical space are spread out in

frequency space

functions that are very concentated in frequency space are spread out in

physical space
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L09-S03Shift theorems

From homework #8: Given f with Ftfu “ F ,

F tfpx ´ �qu “ ei!�F p!q,

for any real number �.

Example
Given f , compute Ftfpxqei�xu in terms of F , the Fourier transform of f .

I.e.:

shifts in frequency space correspond to multiplication by complex exponential

in physical space

shifts in physical space correspond to multiplication by complex exponential in

frequency space
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L09-S04Differentiation

What does differentiation look like in frequency space?

First easy case: if f “ fpx, tq has a Fourier transform with respect to the x variable,

Ftfu “ F p!, tq “ 1
2⇡

ª 8

´8
fpxqei!xdx,

then

F
" Bf

Bt

*
“ BF

Bt .

The more interesting case: what about differentiation in the x variable?

Example
If f “ fpxq, compute Ftf 1u in terms of F .

Thus,

differentiation in physical space corresponds to multiplication by ! in frequency

space

differentiation in frequency space corresponds to multiplication by x in physical

space

What happens for higher-order derivatives?
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L09-S05The Dirac delta function

We introduce the Dirac delta function or Dirac mass, �pxq.

Informally, this is often introduced as

�pxq
"

“8”, x “ 0
0, x ‰ 0

More rigorously, this is a “function” satisfying the following property:

ª 8

´8
fpxq�pxqdx “ fp0q,

for every smooth function f .

Example
Compute the Fourier transform of �px ´ x0q, where x0 is a real number.

Thus,

Dirac masses in physical space correspond to complex exponentials in

frequency space

Dirac masses in frequency space correspond to complex exponentials in

physical space
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L09-S06Convolution, I

The final and perhaps most technical property of Fourier transforms answers the

following question:

If pf, F q and pg,Gq are Fourier transform pairs, then what is the inverse Fourier

transform of F p!qGp!q?

I.e., what does multiplication in frequency space correspond to in physical space?

Example
Compute F´1 pFGq in terms of f , g.
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L09-S07Convolution, II

This motivates the following definition:

Definition
Let functions f and g be given. The convolution of f and g is the function h
defined as

hpxq “ pf ˚ gqpxq “ 1
2⇡

ª 8

´8
gpsqfpx ´ sqds

Therefore,

Multiplication in frequency space corresponds to convolution in physical space

Multiplication in physical space corresponds to convolution in frequency space

Example
Compute the inverse Fourier transform of F p!qei�! in terms of f using

convolutions.
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