The Fourier transform and its properties

MATH 3150 Lecture 08

April 6, 2021

Haberman 5th edition: Sections 10.1 - 10.3

PDE's on infinite domains

We have been solving PDEs on bounded spatial domains, e.g.,

$$u_t = u_{xx}, -L < x < L.$$

for some finite L.

PDE's on infinite domains

We have been solving PDEs on bounded spatial domains, e.g.,

$$u_t = u_{xx}, -L < x < L.$$

for some finite L.

Goal for the rest of the semester: solve PDEs on unbounded domains, e.g.,

$$u_t = u_{xx}, \qquad -\infty < x < \infty.$$

The ideas for bounded domains will extend almost directly to unbounded domains, but the language will look rather different.

(Actually, PDE's are ceuser on unbounded domains)

The essential change

The main difference on unbounded domains is: we will exchange a Fourier *Series* for a Fourier *Transform*.

In practice, this replaces summations by integration. Given a funciton f(x),

Fourier Series =
$$\sum_{n=0}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right),$$
Fourier Transform =
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} F(x) e^{i\omega x} dx.$$

The essential change

The main difference on unbounded domains is: we will exchange a Fourier *Series* for a Fourier *Transform*.

In practice, this replaces summations by integration. Given a function f(x),

Fourier Series =
$$\sum_{n=0}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right),$$
Fourier Transform =
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} F(x) e^{i\omega x} dx.$$

- The series is determined by the frequency coefficients a_n , b_n . The transform is determined by the frequency function $F(\omega)$.
- Series: the parameter n is frequency (is discrete). Transform: the parameter ω is frequency (is continuous).
- Series: summation. Transform: integration.

The next few weeks

Rough outline of next few weeks:

- (1.5 classes) derive relationship between Fourier series and Fourier transform
- (2.5 classes) explore Fourier transform properties
- (2 classes) use Fourier transforms to solve PDEs.

Next: working toward a definition of the Fourier Transform.

Fourier Series --- Fourier transform

There are two ways we'll consider to make the connection between a series and a transform.

First method: via a PDE.

$$u_t = u_{xx}, \qquad -\infty < x < \infty$$

$$\lim_{x \to \infty} |u(x,t)| = 0, \qquad t \geqslant 0$$
 What are the eigenvalues for this problem?

Compae:
$$u(-L,t)=0$$
 } $L \wedge \infty$ $||u(-\infty,t)=0||$ $||u(-\infty,t)=0||$ $||u(-\infty,t)=0||$

Solve using separation of variables:

ansatz:
$$u(x,t) = \varphi(x) T(t)$$

$$U_{t} = U_{xx} \longrightarrow \phi''(x) + \lambda \phi(x) = 0$$

$$\uparrow'(t) + \lambda T(t) = 0$$

$$(\lambda \text{ unknown})$$

BC:
$$|u(\pm \infty, t)| \to 0$$
 $\Rightarrow |\varphi(\pm \infty)| T(t)| \to 0$
 $\lim_{x \to +\infty} |\varphi(x)| = 0.$

ansatz + PDE:
$$\phi''(x) + \lambda \phi(x) = 0$$
, $t'(t) + \lambda T(t) = 0$
 $\lim_{x \to \pm \infty} |\phi(x)| = 0$

Solve eigenvalue problem: find nontrivial
$$\phi(x)$$
 solving $\phi''(x) + b \phi(x) = 0$
 $\lim_{x \to \pm \infty} |\phi(x)| = 0$

One can show: any 1>0 can satisfy BC's,
[with eightnetian sol'ns oblit-cos(xtit)
sin(xtit)

so here: eigenvalues & are not discrete values. (recall on bounded domains: $\lambda_n \sim (n\pi)^2$, n=1,2.

on unbounded domains: I is a continuum : all positive real values.

Later we'll see: I is actually a fequency.
Bounded domains: I (frequency) is discrete
Unbourded domains: I (frequency) is a continuum.

Fourier Series --- Fourier transform

Second method: directly from Fourier series on [-L, L]

$$FS(x) = \sum_{n=0}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{L}\right)$$

What happens as $L\uparrow\infty$? (We'll get the Fourer Transform)

(we got this via an eigenfunction computation,
$$\lambda = (\frac{n\pi}{L})^2$$
)

$$(n\geq 1) \quad O_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi}{L}) dx \quad (formula sheet)$$

$$FS(x) = a_0 \cos\left(\frac{OTIX}{L}\right) + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{nTIX}{L}\right) + b_n \sin\left(\frac{mTX}{L}\right)\right)$$

$$a_o \cos\left(\frac{otx}{L}\right) = a_o e^{-iOx}$$
 (since $e^0 = 1 = \cos(O)$)

$$\frac{a_{n} \cos\left(\frac{u \pi x}{L}\right) + b_{n} \sin\left(\frac{u \pi x}{L}\right)}{= \cos \theta + i \sin \theta}$$

$$= \cos \theta = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta}\right)$$

$$\sin \theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta}\right)$$

$$= \frac{a_{n}}{2} \left[e^{in \pi x/L} + e^{-in \pi x/L}\right] + \frac{b_{n}}{2i} \left[e^{in \pi x/L} - e^{-in \pi x/L}\right]$$

$$= e^{iu \pi x/L} \left[\frac{a_{n}}{2} + \frac{b_{n}}{2i}\right] + e^{-iu \pi x/L} \left[\frac{a_{n}}{2} - \frac{b_{n}}{2i}\right]$$

$$= e^{iu \pi x/L} \left[\frac{a_{n}}{2} + \frac{b_{n}}{2i}\right] + e^{-iu \pi x/L} \left[\frac{a_{n}}{2} - \frac{b_{n}}{2i}\right]$$

$$= \frac{1}{2L} \int_{-L}^{L} f(x) \cos\left(\frac{u \pi x}{L}\right) dx$$

$$+ \frac{1}{2Li} \int_{-L}^{L} f(x) \sin\left(\frac{u \pi x}{L}\right) dx$$

$$= \frac{1}{2L} \int_{-L}^{L} f(x) \left[\cos \left(\frac{n \pi x}{L} \right) + \int_{1}^{L} \sin \left(\frac{n \pi x}{L} \right) \right] dx$$

$$note: \int_{1}^{L} = \frac{1}{i^{2}} = -i$$

$$= \frac{\int}{2L} \int_{-L}^{L} f(x) \int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) - i \sin\left(\frac{n\pi x}{L}\right) \int_{-L}^{L} dx$$

$$e^{-in\pi x/L}$$

$$= \frac{1}{2L} \int_{-L}^{L} f(x) e^{-in\pi x/L} dx$$
define $co_n = \frac{n\pi}{L}$

$$=\frac{1}{L}\left[\frac{1}{2\pi}\int_{-L}^{L}f(x)e^{-i\omega_{n}x}dx\right]$$
define $C(\omega_{n})$

In a similar computation:

$$\frac{\partial u}{\partial x} = \frac{1}{2} c(-\omega_n)$$

Te.:
$$FS(x) = a_0 + \sum_{n=1}^{\infty} (a_n cos(\frac{n\pi x}{L}) + b_n sin(\frac{n\pi x}{L}))$$

$$= a_0 + \sum_{n=1}^{\infty} [e^{i\omega_n x} \cdot f(\omega_n) + c(-i\omega_n)]$$

$$= e^{-i\omega_n x} \cdot f(c(-\omega_n))$$

$$a_{o} = \frac{1}{2L} \int_{-L}^{L} f(x) dx = \frac{1}{2\pi} \int_{-L}^{L} f(x) e^{i\omega_{o}x} dx$$

$$(\omega_{o} = 0)$$

$$FS(x) = \frac{1}{L} (\omega_0) \cdot e^{i\omega_0 x} + \frac{1}{L} \sum_{n=1}^{\infty} c(\omega_n) e^{i\omega_n x}$$

$$+ \frac{1}{L} \sum_{n=-\infty}^{L} c(\omega_n) e^{i\omega_n x}$$

$$(-\omega_n = -\frac{n\pi}{L} = \omega_{-n})$$

$$= \frac{1}{L} \sum_{n=-\infty}^{\infty} c(\omega_n) e^{i\omega_n x}$$

$$c(\omega_n) = \frac{1}{2\pi} \int_{-L}^{L} f(x) e^{-i\omega_n x} dx$$

$$W_n = \frac{n\pi}{L} \Rightarrow \Delta w = \omega_{n+1} - \omega_n = \frac{1}{L}$$

$$FS(x) = \sum_{n=-\infty}^{\infty} c(\omega_n) e^{i\omega_n x} \Delta \omega$$

What happens when L 700? $\Delta w \rightarrow 0$ LTS (frequencies cluster) W2 W3 W4 Es becames a Riemann sum: $FS(\chi) = \sum_{h=-\infty}^{\infty} c(w_h) e^{j(w_h \chi)} \Delta w$ 1 LTa, Riemann Sum $\int_{C}^{\infty} C(w) e^{jwx} dw$ where $C(w) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{-iwx} dx$ This is the Fourier transform.

April 8, 2021

- HW #8 due Tuesday
- Quiz coming Tuesday+ Wednesday.
- Office hows this week moved to Friday 12-1pm (April 9)
- Next week: Office hours at Trus at 1-2pm (April 13)

(No office hours Man. April 12)

The Fourier transform, I

Either method we have discussed results in the following definition:

Definition
$$F(w) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{i wx} dx$$

Given a function f(x), the Fourier transform of f is $F(\omega)$, defined as

$$F(\omega) = \mathcal{F}\{f\}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{i\omega x} \mathrm{d}x, \qquad \begin{array}{c} \text{(compare ogainst c/w) from previous} \\ -\infty < \omega < \infty \end{array} \text{ Slides} \right)$$

Given a function $F(\omega)$, the inverse Fourier transform of F is f(x), defined as

$$f(x) = \mathcal{F}^{-1}\{F\}(x) = \int_{-\infty}^{\infty} F(\omega)e^{-i\omega x} d\omega d\omega \qquad -\infty < x < \infty.$$
(compare against FS(x) from previous Skilles)
$$\int_{-\infty}^{\infty} f(\omega)e^{-i\omega x} d\omega d\omega \qquad -\infty < x < \infty.$$
(compare against FS(x) from previous Skilles)
$$\int_{-\infty}^{\infty} f(\omega)e^{-i\omega x} d\omega d\omega \qquad -\infty < x < \infty.$$

Unlike Fourier Series, F(w) = 2 (f) is a function on real line

Fourier Senes

Cuelficients

$$a_{u}$$
, b_{n}
 $E_{n} = 0,1,2...$

Fourier Transform

 $F(w)$

Fourier Transform

 $F(w)$
 $F(w)$

Fourier Transform

 $F(w)$
 $F(w)$

Fourier Transform

 $F(w)$

Fourier Transform

Fourier Transform:
$$\chi = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{iwx} dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} f(s) e^{iws} ds$$
Inverse Fourier transform: $\chi^{-1} = \int_{-\infty}^{\infty} F(w) e^{-iwx} dw$

$$= \int_{-\infty}^{\infty} F(r) e^{-irx} dr$$

$$\chi^{-1} = \int_{-\infty}^{\infty} f(s) e^{iwx} ds = \int_{-\infty}^{\infty} f(s) e^{iwx} ds = \int_{-\infty}^{\infty} f(s) e^{-iwx} ds = \int_{-\infty}^{$$

The Fourier transform, I

Either method we have discussed results in the following definition:

Definition

Given a function f(x), the Fourier transform of f is $F(\omega)$, defined as

$$F(\omega) = \mathcal{F}\{f\}(\omega) = \frac{1}{2\pi} f(x) e^{i\omega x} dx, \quad = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{e^{i\omega x} dx}{-\infty} dx$$

Given a function $F(\omega)$, the inverse Fourier transform of F is f(x), defined as

$$f(x) = \mathcal{F}^{-1}\{F\}(x) = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx, \quad -\infty < x < \infty.$$

Like in the Fourier series case, it need not be the case that $\mathcal{F}^{-1}\{\mathcal{F}\{f\}\}=f$. In general:

$$\frac{1}{2}\left[f(x^+)+f(x^-)\right]=\mathcal{F}^{-1}(\mathcal{F}(f)).$$
 In particular: if f is continuous: $\mathcal{J}^{-1}\left\{\mathcal{J}\left\{f\right\}\right\}\left\{\chi\right\}=f(\chi).$

L08-S07

The Fourier transform. II

The Fourier transform, II

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{i\omega x} dx$$

$$f(x) = \mathcal{F}^{-1}\{F\}(x) = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx$$

$$F(\omega) = \mathcal{F}\{f\}(\omega) = \frac{1}{2\pi} f(x) e^{i\omega x} dx, \quad f(x) = \mathcal{F}^{-1}\{F\}(x) = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx$$

The Fourier transform is a direct analogue of Fourier series:

The Fourier transform, II

The Fourier transform, II

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{iwx} dx \qquad \text{if f is}$$

$$= \int_{-\infty}^{\infty} f(w) e^{-iwx} dw$$

$$F(\omega) = \mathcal{F}\{f\}(\omega) = \frac{1}{2\pi} f(x) e^{i\omega x} dx, \quad f(x) = \mathcal{F}^{-1}\{F\}(x) = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx$$

The Fourier transform is a direct analogue of Fourier series:

1. Fourier Series: a_n , b_n are the frequency components. Fourier Transform: $F(\omega)$ determines the frequency components

The Fourier transform. II

The Fourier transform, II
$$= \frac{1}{2\pi i} \int_{-\infty}^{\infty} f(x) e^{i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} d\omega dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} d\omega dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} d\omega dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} d\omega dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} d\omega dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} d\omega dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} d\omega dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} d\omega dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} d\omega dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx \qquad \text{if } f \text{ is } \\ = \int_{$$

The Fourier transform is a direct analogue of Fourier series:

- 1. Fourier Series: a_n , b_n are the frequency components. Fourier Transform: $F(\omega)$ determines the frequency components
- 2. Fourier Series: The series is formed by summing components over all frequencies. Fourier Transform: The inverse transform is formed by integrating components over all frequences.

The Fourier transform. II

The Fourier transform, II

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{i\omega x} dx, \quad f(x) = \mathcal{F}^{-1}\{F\}(x) = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx$$

$$E(\omega) = \mathcal{F}\{f\}(\omega) = \frac{1}{2\pi} f(x) e^{i\omega x} dx, \quad f(x) = \mathcal{F}^{-1}\{F\}(x) = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} dx$$

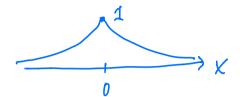
The Fourier transform is a direct analogue of Fourier series:

- 1. Fourier Series: a_n , b_n are the frequency components. Fourier Transform: $F(\omega)$ determines the frequency components
- 2. Fourier Series: The series is formed by summing components over all frequencies. Fourier Transform: The inverse transform is formed by integrating components over all frequences.
- 3. Fourier series: applies over a bounded domain. Fourier Transform: applies over an infinite domain.

Fourier transform examples

Example

Compute the Fourier transform of $f(x) = \exp(-|x|)$.



$$I\{f\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{jux} dx$$

$$=\frac{1}{2\pi}\int_{-\infty}^{\infty}\exp(-|x|)e^{iux}dx$$

$$|\chi| = \begin{cases} x, & \chi \ge 0 \\ -x, & \chi \le 0 \end{cases}$$

$$=\frac{1}{2\pi}\int_{-\infty}^{0} e^{x}e^{iux}dx + \frac{1}{2\pi}\int_{0}^{\infty} e^{-x}e^{i\omega x}dx$$

$$=\frac{1}{2\pi}\int_{0}^{\infty}e^{\left(-1-iw\right)u}du+\frac{1}{2\pi}\int_{0}^{\infty}e^{\left(-1+iw\right)x}dx$$

$$= \frac{1}{2\pi} \frac{1}{-1-i\omega} e^{(-1-i\omega)u} \int_{0}^{\infty} + \frac{1}{2\pi} \frac{1}{-1+i\omega} e^{(-1fi\omega)x} \int_{0}^{\infty}$$

$$= \frac{1}{2\pi} \left[\frac{1}{-1-i\omega} \left(0 - \frac{1}{1} \right) + \frac{1}{-1+i\omega} \left(0 - \frac{1}{1} \right) \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{1+i\omega} + \frac{1}{1+i\omega} \right] = \frac{1}{2\pi} \left[\frac{1-i\omega}{(1+i\omega)(1-i\omega)} \right]$$

$$= \frac{1}{2\pi} \left[\frac{2}{1-(i\omega)^{2}} \right] = \frac{1}{2\pi} \frac{1}{1+\omega^{2}} = F(\omega)$$

$$F(\omega)$$

Note: this also allows us to compute
$$T^{-1} \left\{ \exp(-|w|) \right\}$$
.

 $T^{-1} \left\{ \exp(-|w|) \right\} = \int_{-\infty}^{\infty} e^{-|w|} e^{-iwx} dw$
 $= 2\pi \int_{-\infty}^{\infty} e^{-|w|} e^{-iwx} dw$
 $= 2\pi \int_{-\infty}^{\infty} e^{-|w|} e^{-iwx} dw$
 $= 2\pi \int_{-\infty}^{\infty} e^{-|w|} e^{-|w|} e^{-|w|} dw$
 $= 2\pi \int_{-\infty}^{\infty} e^{-|w|} e^{-|w|} dw$

Also notice:
$$exp(-|x|)$$

$$\frac{1}{1+x^2}$$

$$exp(-|x|)$$

$$\frac{2}{1+x^2}$$

$$exp(-|x|)$$

$$exp(-|x|)$$

Duality: if
$$\mathcal{I}\{g\}(w) = b(w)$$
 up to some
then $\mathcal{I}^{-1}\{g\}(x) = b(x)$ multiplicative
constants

Fourier transform examples

Example

Compute the Fourier transform of $f(x) = \exp(-|x|)$.

Example

Let $\beta > 0$ be given. Show that the Fourier transform of $f(x) = \exp(-x^2/(4\beta))$ is $F(\omega) = \sqrt{\frac{\beta}{\pi}} \exp(-\beta \omega^2)$.

$$J\{f\}(w) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{iwx} dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-x^{2}/y} e^{iux} dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{x} \rho\left(-\frac{x^{2}}{y} + iwx\right) dx$$

$$cxpnext: \frac{-x^{2}}{y\beta} + i\omega x \qquad (will complete the Square)$$

$$= \frac{-1}{y\beta} \left[x^{2} - 4i\beta\omega x \right]$$

$$= -\frac{1}{y\beta} \left[(x^{2} - 4i\beta\omega x)^{2} - (2i\beta\omega)^{2} - (2i\beta\omega)^{2} \right]$$

$$= -\frac{1}{y\beta} \left[(x^{2} - 2i\beta\omega)^{2} - (2i\beta\omega)^{2} \right]$$

$$= -\frac{1}{y\beta} \left[(x^{2} - 2i\beta\omega)^{2} + \frac{1}{y\beta} \cdot 4\beta^{2} i^{2}\omega^{2} \right]$$

$$= -\frac{1}{y\beta} \left[(x^{2} - 2i\beta\omega)^{2} + \frac{1}{y\beta} \cdot 4\beta^{2} i^{2}\omega^{2} \right]$$

$$= -\frac{1}{y\beta} \left[(x^{2} - 2i\beta\omega)^{2} - \beta\omega^{2} \right]$$

$$= -\frac{1}{y\beta} \left[(x^{2} - 2i\beta\omega)^{2} \right] \exp(-\beta\omega^{2}) dx$$

$$= \exp(-\frac{1}{y\beta} (x^{2} - 2i\beta\omega)^{2}) dx dy$$

$$= -\frac{1}{y\beta} \left[(x^{2} - 2i\beta\omega)^{2} - (2i\beta\omega)^{2} \right] dx dy$$

$$= -\frac{1}{y\beta} \left[(x^{2} - 2i\beta\omega)^{2} - (2i\beta\omega)^{2} \right] dx dy$$

$$\begin{array}{lll}
x = x^{-1} \\
y = y^{-1} \\
y = y^{-1} \\
& = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[-\infty \right]_{-\infty}^{\infty} \exp(-ax^{2}) \operatorname{rd}x dy \\
& = \int_{0}^{2\pi} \int_{0}^{\infty} \exp(-ax^{2}) \operatorname{rd}x dy \\
& = 2\pi \int_{0}^{\infty} \operatorname{rexp}(-ax^{2}) dx \\
& = 2\pi \int_{0}^{\infty} \exp(-ax^{2}) dx \\
& = 2\pi \int_{0}^{\infty} \exp(-\beta w^{2}) dx dy \\
& = \int_{0}^{2\pi} \int_{0}^{\infty} \exp(-\beta w^{2}) dx dy \\
& = \int_{0}^{2\pi} \int_{0}^{\infty} \exp(-\beta w^{2}) dx dy dx dy$$