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L06-S00

Fourier series

MATH 3150 Lecture 06

March 16, 2021

Haberman 5th edition: Section 3.1 - 3.3
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Infinite series L06-S01

When solving PDEs, we have seen infinite sums of the form

00
nmwx
aop + Z Qan, COS (T)
n=1
In the heat equation: attempt to represent initial data using eigenfunctions.
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Infinite series L06-S01

When solving PDEs, we have seen infinite sums of the form

Q0
nmwx
ao + Z Qn COS (T)
n=1
In the heat equation: attempt to represent initial data using eigenfunctions.

This lecture: can we accurately represent functions using these types of sums?
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Four : L06-502
ourier series

Let f(z) be a given function for x € [—L, L].

Definition
The Fourier series of f is defined as,

FS = Z Qp, COS (mr:c) Z b,, sin (nmc)
n=0 -_—
where the Fourier coefficients aregivm/

e,[j@,\ﬁmchw 41 dlated

1" Wi BC
f(x)dx, o pe b L.
) #(0)=9(L)

L /
an:%J_Lf(x)cos<$)dx, n>=1 47'(0)z:¢ (L)
by, = %JP_LL f(x) sin (?) dz, n > 1.
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Four : L06-502
ourier series

Let f(x) be a given function for x € [—L, L].

Definition
The Fourier series of f is defined as,

Q( = FS := Z .y, COS <n7rac) i b, sin (nmc) :

where the Fourier coefficients are given by

1 (L
a0 = o » f(x)dz,
1 rL
an = i Lf(x)cos (?) dex, n>=1
by = 1 - f(x)sin (m) dx n>=1
n — L )} L L 9 =

Given f, its Fourier series is, in principle, always computable.
Main question for us: does F'S = f? Is F'S ~ f true?
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Smooth functions and discontinuities L06-503

We'll use some terminology to classify types of functions.

@ A function f is smooth on the interval [a,b] if f and f’ are both continuous
for every x in [a, b].

smooth funefong
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Smooth functions and discontinuities L06-503

We'll use some terminology to classify types of functions.

@ A function f is smooth on the interval [a,b] if f and f’ are both continuous
for every x in [a, b].

@ A function f has jump discontinuity at x = z¢ if

flzg) = lim f(z)# lim f(z) = f(zg).
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Piecewise smooth functions and periodic extensions L06-504

Some more terminology to characterize functions:

@ A function f is piecewise smooth on the interval [a, b] if the interval can be
broken up into several closed subintervals on each of which f is smooth.
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Piecewise smooth functions and periodic extensions L06-504

Some more terminology to characterize functions:

@ A function f is piecewise smooth on the interval [a, b] if the interval can be
broken up into several closed subintervals on each of which f is smooth.

@ A function f defined on [—L, L) has a periodic extension on the entire real line

defined by

f(x 4+ 2nL) = f(x), xel|-L, L), ne{...,—2,—-1,0,1,2,...,}.
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Convergence of Fourier series L06-S05

Given f, the Fourier series is

0 @) 0 @)
FS = Z Qy, COS (fnLﬂ) + Z b,, sin (?)

n=0 n=1
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Convergence of Fourier series L06-S05

Given f, the Fourier series is

- nmwx - . [nTx
FS = Z Qy, COS <T> + nzzzlbn sin (T) .

n=0

We seek to understand the “convergence’ of Fourier series. Rigorously, this means
that we truncate the infinite sums to finite ones,

i Qp, COS (mr:z:) Z by, sin (mra:)

n=0

and try to understand what happens as N 1 o0.
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Main result ((owegens o Founts (oriod) L06-506

Theorem

Let f be a piecewise smooth function on [—L, L|; we will also consider its periodic
extension, fpe.

Then for every x, the Fourier series of f converges,

@ to fpe at every point x where fp. is continuous ) .
. N B . o ] [wlm ﬂ\]wﬂ*p
o to £ [fpe(z™) + fre(xz™)] at every point & where fye is discontinuous.
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L06-S07
Examples

For all the following examples, consider the Fourier series of f over the interval
[—L, L], and (a) plot f, (b) plot the periodic extension of f, (c) plot the Fourier
series of f, and (d) compute the Fourier coefficients.

Example

f(xz) = cos (?”FT"”’)

o) ﬂ@%@\//\f/\\j@ > X € ety poude)

Uo) —qUﬂU Uﬂuﬂ /\ [‘ 5y ’ppe

(c) W\ M\ﬂ ﬂf,ﬁ)x O]
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L06-S07
Examples

For all the following examples, consider the Fourier series of f over the interval
[—L, L], and (a) plot f, (b) plot the periodic extension of f, (c) plot the Fourier
series of f, and (d) compute the Fourier coefficients.

Example

f(xz) = cos (?”“T“”)

Example
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L06-S07
Examples

For all the following examples, consider the Fourier series of f over the interval
[—L, L], and (a) plot f, (b) plot the periodic extension of f, (c) plot the Fourier
series of f, and (d) compute the Fourier coefficients.

Example
f(z) = cos (22%)
Example
0, z<1L/2
f(x):{ 1, z>1L/2 }
Example
f(x) = |z
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Even and odd functions L06-S08

We will now move a little bit away from our standard Fourier series definitions.
Recall:

@ A function f is even if f(x) = f(—=x) for all real x
@ A function f is odd if f(x) = —f(—=x) for all real x
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Even and odd functions L06-S08

We will now move a little bit away from our standard Fourier series definitions.
Recall:

@ A function f is even if f(x) = f(—=x) for all real x
@ A function f is odd if f(x) = —f(—=x) for all real x

Some immediate consequences of this:
@ If f is even, its Fourier sine coefficients (b, ) vanish.

o If f is odd, its Fourier cosine coefficients (a,) vanish.
/ \
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Fourier s : L06-S09
ourier Zme series

If f is even, then we need only compute the “sine portion” of its Fourier series.
This"motivates another definition:
- on [0,L]
Definition
The Fourier sine series of f is defined as, (" - ‘
FCs Fourer sgrivg
Q0
nwx
F = b, si (—) ,
SS nZ::l sin { —

where the Fourier sine coefficients are given by

2 (* nmwx
= — i —_— = 1.
by, Lfo f(:c)sm( 7 >dx, n=>=1

S = FS
@{-‘\W\fm dres e F§§ ch o \Q?
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Fourier si : L06-S10
ourler sine series convergence

Convergence of a Fourier sine series can be understood by directly applying our
main theorem about Fourier series.

The result: Let f be a given function.
o Let f,p be the “odd” periodic extension of f: g1 [0) L]
> fope(x) = f(x) for  in [0, L].
> fope(x) = —f(—=x) for = in [—L,0].
> fope is periodically extended outside [—L, L].
@ The Fourier sine series of f converges to f,,. Where fo,e is continuous, and to
the average of the left- and right-hand limits when it is discontinuous.
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L06-S11
Examples

For all the following examples, consider the Fourier series of f over the interval
[—L, L] and its Fourier sine series on [0, L].

Complete the following (a) plot f, (b) plot the periodic extension of f, (c) plot the
odd periodic extension of f, (d) plot the Fourier series of f, and (e) plot the
Fourier sine series of f.

Example

flz) ==
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L06-S11
Examples

For all the following examples, consider the Fourier series of f over the interval
[—L, L] and its Fourier sine series on [0, L].

Complete the following (a) plot f, (b) plot the periodic extension of f, (c) plot the
odd periodic extension of f, (d) plot the Fourier series of f, and (e) plot the
Fourier sine series of f.

Example (&) —— > ¥ ‘q'X)

Example

fla)=1

b A ——F— x ‘ﬁpe(y)
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L06-S11
Examples

For all the following examples, consider the Fourier series of f over the interval
[—L, L] and its Fourier sine series on [0, L].

Complete the following (a) plot f, (b) plot the periodic extension of f, (c) plot the
odd periodic extension of f, (d) plot the Fourier series of f, and (e) plot the
Fourier sine series of f.

Example {:Tf— [:S — F&S

fz) ==

Example

flx) =1 'p: Pg % [:S\g

Example

f(a) = costnz/1) (= =
FC#FSS
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. . . L06-S12
Fourier cosine series

If fis , then we need only compute the “cosine portion” of its Fourier series.
This motivates the definition:

Definition
The Fourier cosine series of f is defined as,

=S FC = BeS
ESS = 3} ancos (“77), X[

where the Fourier cosine coefficients are given by FCS W}

rL

1
ap = — x)dx,
=7 f(z)
2 (- nmwe
n= = — , =1
a I f(x)cos( 7 )dx n

C?‘ \/L\ff\ J(?(g FCS CDV\M@%7
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: : : L06-513
Fourier cosine series convergence

Convergence of a Fourier cosine series can be understood by directly applying our
main theorem about Fourier series.

The result: Let f be a given function.
o Let fcpe be the “even” periodic extension of f:
> fepe(x) = f(x) for x in [0, L].
> fepe(x) = f(—z) for x in [—L,0].
> fepe is periodically extended outside [—L, L].
@ The Fourier cosine series of f converges to fepe Where fepe is continuous, and
to the average of the left- and right-hand limits when it is discontinuous.
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L06-S14
Examples

For the following example, consider the Fourier series of f over the interval [—L, L]
and its Fourier sine and cosine series’s on [0, L].

Complete the following (a) plot f, (b) plot the periodic extension of f, (c) plot the
odd periodic extension of f, (d) plot the even periodic extension of f, (e) plot the
Fourier series of f, (f) plot the Fourier sine series of f, and (g) plot the Fourier
cosine series of f.

(a) / ;

Example

flz) ==
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