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Linearity and superposition

MATH 3150 Lecture 03

February 2, 2021
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Haberman 5th edition: Sections 2122
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PDEs and the heat equation L03-501

With k > 0 a constant, the heat equation is a PDE
U = k Ugpyp. \i(\(lt)) k?O

For a well-posed problem, we also need initial and boundary conditions.
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PDEs and the heat equation L03-501

With k > 0 a constant, the heat equation is a PDE
U = Kk Ugy.

For a well-posed problem, we also need initial and boundary conditions.
The PDE above can be equivalently described by linear operators.

This alternative description allows us to leverage linearity to analyze PDE
solutions.
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PDEs as linear operators L03-502

The heat equation,

Ut = ku:l::lh
can equivalently be written as
2
L{u] =0, Llu] = (% — k%) U= U — gy
N — )
h
L hake B, subfrad

MATH 3150-002 — U. Utah Linearity



PDEs as linear operators L03-502

The heat equation,

Ut = ku:l::&
can equivalently be written as
0 0*
L{u] =0, Llu] = <% — k$> U= U — gy

L above is a (differential) operator.

Similar to linear functions, linear operators satisfy linearity conditions.
Definition

An operator L is linear if, given any 2 functions w1, us, and any 2 real scalars
€1, C2,

L[61U1 + CQUQ] = clL[ul] + CQL[UQ].

A PDE is linear if it can be written as L[u] = f for some linear operator I)
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L03-503

Linearity
Example
Show that the heat equation operator, L = % — k%, is linear.

Clhow L[c,u\f ched= CLLuTv C L[%zf Whgre ¢, C
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Linearity L03-503

Example
. 2 ..
Show that the heat equation operator, L = % — kaa?, is linear.

Example
Determine if the operator L defined by L[u] = 2 (u?) is linear or nonlinear.

Sppose u=ube), LLuT= 3 (u)= 2y,

/
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Homogeneous equations and conditions L03-504

In this class, we will exclusively address linear PDEs.

Another useful characterization is whether or not PDEs are homogeneous.

Definition
A linear PDE L[u] = f is homogeneous if f = 0.

E\_{, U, T KUy 15 a //(My) waoﬂ@/zcwg PDE

Up= Ky P s g s h0n~h0vm13WS
DE.

Uy =K £ Qlxt) | @40 howhompgeneoc
Liuiz Q PDE.

MATH 3150-002 — U. Utah Linearity




Homogeneous equations and conditions L03-504

In this class, we will exclusively address linear PDEs.

Another useful characterization is whether or not PDEs are homogeneous.

Definition
A linear PDE L[u] = f is homogeneous if f = 0.

The homogeneous characterization extends to boundary conditions.

Definition
Consider a PDE in one spatial dimension. u:—u()(,{—.)

@ The initial condition u(x,0) = f(x) is homogeneous if f = 0.

@ The boundary condition u(0,t) = T3 (t) is a homogeneous Dirichlet
condition if T7(t) = 0.

@ The boundary condition u,(0,t) = T1(¢) is a homogeneous Neumann
condition if T3 (t) = 0.
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Homogeneous equations and conditions L03-504

In this class, we will exclusively address linear PDEs.

Another useful characterization is whether or not PDEs are homogeneous.

Definition
A linear PDE L[u] = f is homogeneous if f = 0.

The homogeneous characterization extends to boundary conditions.

Definition
Consider a PDE in one spatial dimension.

@ The initial condition u(x,0) = f(x) is homogeneous if f = 0.

@ The boundary condition u(0,t) = T1(t) is a homogeneous Dirichlet
condition if T7(t) = 0.

@ The boundary condition u,(0,t) = T1(¢) is a homogeneous Neumann
condition if T3 (t) = 0.

Linear, homogeneous equations need not have homogeneous boundary
conditions.
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Superposition L03-505

The main utility we will get out of these classifications is superposition.

LYM -
Theorem (Principle of Superposition =0, L {var

If uy and ugy are both solutions to a linear and homogeneous PDE, then
ci1u1 + cous, for any constants ¢1 and cs, is also a solution to the PDE.

The above property applies only addresses the PDE! It does not consider
initial and/or boundary conditions.

LlgT=0 + (1w 1=0 ==, Llcy+tc,u.{=0

WVM(W(-H(K)Y\
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E L03-S06
xamples, |

Example
Verity superposition for the following ODE and solutions w1, us:

LFW, Lowfgé‘/\wu OPE: L[u]’@) L:€—22+1ﬁ)
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L03-506

Examples, |

Example
Verity superposition for the following ODE and solutions w1, us:

u”(x) + 75U = 0, u(0) = 0, u(L) =0
uy(x) =0, us(x) = sin (%) :
Example U

Verify superposition for the following PDE and solutions oy, Us:

Ut = Ugy, u(0,t) =0, u(L,t) =0

()=, up(x,t) = exp (—(m/L)%t) sin (%) ,
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Examples, |l L03-507

Example
Analyze superposition for the following PDE and solutions wuq, us:

W{‘M9, u//(gj) + 72 :/%{QX U(O) =0, u(l) =1

L d up(x) = x, us(z) = = +sin (7z),
jP{ dl a~1 2
Can er%-‘ L Tuls= ot = %
U LT d= 0, Llwl=0,
Gk U 0)7 Uy (0)=0 (BC)

ond (1Y Ty (])= | ( B0
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