Department of Mathematics, University of Utah
Introduction to Optimization
MATH 5770/6640, ME EN 6025 - Section 001 - Fall 2021
Homework 6
Convex optimization
Due December 7, 2021

Submit your homework assignment as a scanned copy ON CANVAS, to the Homework 6 assignment.

Text: Introduction to Nonlinear Optimization, Amir Beck,
Exercises: \# 8.2,
8.3,
8.4 (i), (ii), (iii), and only part (a) for each
11.2,
11.6 (iii) only,

P1 (6000-level students only)

Additional problems:

P1. (6000-level students only) Given $n \in \mathbb{N}$, let C be the closed, convex set of $n \times n$ positive semi-definite matrices,

$$
C=\left\{\boldsymbol{A} \in \mathbb{R}^{n \times n} \mid \boldsymbol{A} \text { is symmetric, } \boldsymbol{A} \succeq \mathbf{0}\right\} .
$$

Given any $n \times n$ symmetric matrix \boldsymbol{A}, let $P_{C}(\boldsymbol{A})$ denote the $\|\cdot\|$-projection of \boldsymbol{A} onto C. Show that both of the following statements are true,

$$
\begin{array}{ll}
P_{C}(\boldsymbol{A})=\boldsymbol{U} \boldsymbol{\Lambda}_{+} \boldsymbol{U}^{T}, & \|\cdot\|=\|\cdot\|_{2} \text { (the spectral or induced matrix 2-norm) } \\
P_{C}(\boldsymbol{A})=\boldsymbol{U} \boldsymbol{\Lambda}_{+} \boldsymbol{U}^{T}, & \|\cdot\|=\|\cdot\|_{F} \text { (the Frobenius, or entrywise norm) }
\end{array}
$$

where $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{T}$ is the eigenvalue decomposition of \boldsymbol{A}, and $\boldsymbol{\Lambda}_{+}=\max \{\boldsymbol{\Lambda}, 0\}$ with the max function applied componentwise.

