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Exercises: # 8.2,
8.3,
8.4 (i), (ii), (iii), and only part (a) for each

11.2,
11.6 (iii) only,
P1 (6000-level students only)

8.2. Let C = B[x0, r], where x0 ∈ Rn and r > 0 are given. Find a formula for the orthgonal
projection operator PC .

Solution: Note that we trivially have,

PCx = x, if x ∈ C.

Therefore, we assume in what follows that x 6∈ C. In this case, we have,

PCx := argmin
y∈C

‖x− y‖2 = argmin
y∈C

‖x− y‖22,

However, we can restrict the minimization above to the boundary of C: a necessary condition
for y∗ to solve the above problem on the interior of C is that y∗ must be a stationary point for
the objective function f(y) = ‖x− y‖22. But f has a single stationary point at y = x, which
we assume is not in C, so y∗ = x is impossible. Thus the minimizer cannot lie on the interior
and must lie on the boundary. I.e., we can restrict our minimization to vectors y given by
y = x0 + ra for arbitrary unit vector a ∈ Rn. Therefore,

min
y∈∂C

‖x− y‖22 = min
‖a‖2=1

‖x− x0 − ra‖22,

= min
‖a‖2=1

〈x− x0 − ra,x− x0 − ra〉

= min
‖a‖2=1

‖x‖22 + ‖x0‖22 + r2‖a‖22 − 2 〈x,x0〉 − 2r 〈a,x− x0〉

= min
‖a‖2=1

−2r 〈a,x− x0〉

= max
‖a‖2=1

〈a,x− x0〉 .
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By the Cauchy-Schwarz inequality, the solution of the above maximization is,

argmax
‖a‖2=1

=
x− x0

‖x− x0‖2
.

Therefore, we have

PCx =

{
x, x ∈ C

x0 + r x−x0
‖x−x0‖2 , x 6∈ C

8.3. Let f be a strictly convex function over Rm and let g be a convex function over Rn.
Define the function,

h(x) = f(Ax) + g(x),

where A ∈ Rm×n. Assume that x∗ and y∗ are optimal solutions of the unconstrained problem
of minimizing h. Show that Ax∗ = Ay∗.

Solution: The function h is a sum of convex functions, and is hence convex itself. Therefore,
the set of minimizers is itself convex. Thus, the entire line segment [x∗,y∗] is a minimizer of h.
(Recall that [x∗,y∗] means the closed line segment connecting x∗ and y∗ in Rn.) Therefore,
for any λ ∈ [0, 1], we have,

λx∗ + (1− λ)y∗ ∈ argmin
x∈Rn

h(x),

and we also have h(x∗) = h(y∗). Now assume that Ax∗ 6= Ay∗; we will prove the desired result
by contradiction. Using convexity of g and strict convexity of f , we have for any λ ∈ (0, 1),

h(λx∗ + (1− λ)y∗) = f(λAx∗ + (1− λ)Ay∗) + g(λx∗ + (1− λ)y∗)

≤ f(λAx∗ + (1− λ)Ay∗) + λg(x) + (1− λ)g(y)

(∗)
< λf(Ax∗) + (1− λ)f(Ay∗) + λg(x) + (1− λ)g(y)

= λh(x∗) + (1− λ)h(y∗)

= h(x∗).

where the strict inequality (∗) is true since f is strictly convex and we assume Ax∗ 6= Ay∗.
We have shown that h evaluated at λx∗ + (1 − λ)y∗ is strictly smaller than h at x∗, which
contradicts the optimality of x∗. Therefore, our assumption Ax∗ 6= Ay∗ must be incorrect, so
that Ax∗ = Ay∗.

8.4. For each of the following optimization problems, (a) show that it is convex. (Note: there
are parts (b) and (c) of this problem that were not assigned.)

(i)

min x21 + 2x1x2 + 2x22 + x23 + 3x1 − 4x2

s.t.
√

2x21 + x1x2 + 4x22 + 4 +
(x1 − x2 + x3 + 1)2

x1 + x2
≤ 6

x1, x2, x3 ≥ 1.
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(ii)

max x1 + x2 + x3 + x4

s.t. (x1 − x2)2 + (x3 + 2x4)
4 ≤ 5

x1 + 2x2 + 3x3 + 4x4 ≤ 6

x1, x2, x3, x4 ≥ 0.

(iii)

min 5x21 + 4x22 + 7x23 + 4x1x2 + 2x2x3 + |x1 − x2|

s.t.
x21 + x22
x3

+ (x21 + x22 + 1)4 ≤ 10

x3 ≥ 10

Solution: In all the following solutions, we have shown the problem is convex if we demonstrate
that the objective function is convex, and the constaint set is convex.

(i) The objective function can be written as,

x21 + 2x1x2 + 2x22 + x23 + 3x1 − 4x2 = xTAx + (3x1 − 4x2),

where

A =

 1 1 0
1 2 0
0 0 1

 � 0,

and therefore the objective function is a conic combination of convex functions (all affine
functions are convex) and hence the objective function is convex.

The full constraint set is an intersection of 4 convex sets: if we show that each set is
convex, then their intersection is also convex. The last three constraints, x1, x2, x3 ≥ 1
are convex sets (e.g., they are level sets of convex, affine functions). The first constraint
can be written as,√

2x21 + x1x2 + 4x22 + 4 +
(x1 − x2 + x3 + 1)2

x1 + x2
= 2
√

xTQx + 1 +
‖Bx + c‖22
wTx + 0

,

where

Q =

 1
2

1
8 0

1
8 1 0
0 0 0

 � 0, B =
(

1 −1 1
)
, c =

(
1
)
, w =

 1
1
0

 .

Thus, this constraint is the conic sum of a function of the form
√
xTQx + 1 with Q � 0

(which is convex by homework #5), and a quadratic-over-linear function (which is convex
as shown in Lecture 14). Therefore, this constraint is also convex.

(ii) The objective function is affine (actually linear), and therefore is convex. The last 4
constraints x1, x2, x3, x4 ≥ 0 are all convex being level sets of affine functions. The
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penultimate constraint x1 + 2x2 + 3x3 + 4x4 ≤ 6 is the level set of an affine function, and
is hence convex. The first constraint is the level set of the function,

f(x) = (x1 − x2)2 + (x3 + 2x4)
4,

so we need only show that f is convex. The function f is a conic combination of two
functions, so we focus on showing that these two functions are individually convex, which
would prove the result. The function,

g(x) = (x1 − x2)2 = xTAx, A =


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 � 0,

and is hence convex. The other function can be written as,

h(x) = (x3 + 2x4)
4 = (Bx)4 , B =

(
0 0 1 2

)
,

which is a composition of the strictly convex function t 7→ t4 with an affine function
x 7→ Bx. Hence, this composed function h is convex (cf. Theorem 7.17).

(iii) The objective function can be written as,

5x21 + 4x22 + 7x23 + 4x1x2 + 2x2x3 + |x1 − x2| = xTQx + |aTx|,

where,

Q =

 5 2 0
2 4 1
0 1 7

 � 0, aT = (1,−1, 0).

Hence, the objective function is a conic combination of a positive-definite quadratic
function (xTQx) and a second function that is also convex since it’s the composition of
a convex function with an affine function. Thus, the objective function is convex.

The last constraint, x3 ≥ 10, is a convex set since it’s the level set of an affine function.
The first constraint is the level set of the function,

f(x) =
x21 + x22
x3

+ (x21 + x22 + 1)4,

so we seek to show that this function is convex. Write this function as a conic combination
of two functions,

f(x) =
‖Ax‖22
wTx + 0

+
(
xTRx + 1

)4
,

where

R =

 1 0 0
0 1 0
0 0 0

 � 0

The first function is a quadratic-over-linear function, and hence is convex. The second
function is the composition of the function t 7→ t4, which is monotone increasing and
convex for t ≥ 0, with the quadratic function xTRx + 1, which is convex since R � 0.
Therefore, this second function is also convex. Thus, f is the conic combination of two
convex functions, and is thus convex.
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11.2. Consider the optimization problem

(P) min
{
aTx : xTQx + 2bTx + c ≤ 0

}
,

where Q ∈ Rn×n is positive definite, a(6= 0), b ∈ Rn, and c ∈ R.
(i) For which values of Q, b, c is the problem infeasible?

(ii) For which values of Q, b, c are the KKT conditions necessary?
(iii) For which values of Q, b, c are the KKT conditions sufficient?
(iv) Under the condition of part (ii), find the optimal solution of (P) using the KKT condi-

tions.

Solution:
(i) Since Q � 0, the feasible set is a compact set, and the objective function is continuous.

So the problem is feasible if and only if the feasible set is non-empty, i.e., there must
exist at least one x such that xTQx + 2bTx + c ≤ 0. This happens exactly when the
minimum value of the function g defined as,

g(x) := xTQx + 2bTx + c,

is non-negative. Since this is a quadratic function (with a positive-definite Hessian 2Q),
the unique minimum of this function is the unique solution to the first-order conditions
∇g(x) = 0. This minimum is given by,

−Q−1b = x̃ := argmin
x∈Rn

g(x).

We then directly compute,

g(x̃) = c− bTQ−1b.

Therefore, problem (P) is feasible if and only if g(x̃) ≤ 0, i.e., if and only if

c ≤ bTQ−1b

(ii) First we note that the solution to this problem lies on the boundary of the feasible set:
if x∗ is a local minimum that lies in the interior, then there is some ε > 0 such that
B(x∗, ε) also lies in the interior, and therefore for any t < ε, we have,

x∗ − t

2

a

‖a‖2
is feasible

f

(
x∗ − t

2

a

‖a‖2

)
= f(x∗)− t‖a‖2

2
< f(x∗),

where f(x) := aTx. This shows that x∗ cannot be a local minimum if it lies in the
interior of the feasible set, and thus local minima must lie on the boundary.

The KKT conditions are necessary when local minima of the problem are regular points.
Regularity in this case demands that ∇g(x) not be a linearly dependent vector, which
occurs only when ∇g(x) = 0. In part (i) we already showed that there is a single point
at which this happens, x = −Q−1b, and thus this is the only irregular point. Does this
irregular point lie on the boundary of the feasible set? At this irregular point, we have

g(x) = c− bTQ−1b.
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If this evaluates to exactly 0, then x is on the boundary of the feasible set, but if this
evaluates to any (strictly) negative number, then x lies in the interior. In the latter case,
although x = −Q−1b is always irregular, it cannot be a local minimum. Therefore, the
KKT conditions are necessary when

c < bTQ−1b

(iii) The function f(x) := aTx is convex, and g(x) is (strictly) convex since Q is (strictly)
positive-definite. Therefore this is a convex optimization problem and the KKT condi-
tions are always sufficient (assuming the problem is feasible).

(iv) Defining f(x) = aTx, and with g the constraint function defined above, we wish to use
the KKT conditions on the problem,

min f(x) subject to g(x) ≤ 0,

where we assume as determined in part (ii) that bTQ−1b− c > 0. The KKT conditions
in this case are,

∇f + λ∇g = a + 2λ(Qx + b) = 0,

λg(x) = λ(xTQx + 2bTx + c) = 0,

λ ≥ 0,

g(x) ≤ 0.

First we note a simplification: if λ = 0, then the first condition becomes a = 0, which
violates the assumption in the problem statement. Therefore, we must have λ > 0.
This then implies through the second condition that g(x) = 0, which makes the fourth
condition unnecessary. Therefore, a simplification of the above is:

a + 2λ(Qx + b) = 0,

xTQx + 2bTx + c = 0,

λ > 0.

We now simplify this problem even further through a variable transformation: Since
Q � 0, then let

Q = LLT , y := LTx,

where L can be either a Cholesky factor of Q or the matrix square root of Q computed
through its eigenvalue decomposition. (In the latter case L is symmetric, but we do not
make this assumption in what follows.) We can then rewrite our KKT conditions in
terms of the new variable y:

ã + 2λ(y + b̃) = 0, (1a)

yTy + 2b̃Ty + c = 0, (1b)

λ > 0, (1c)

where we have defined new vectors ã and b̃ as,

ã := L−1a, b̃ := L−1b.
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We will first solve (1) for y and then compute x = LTx. Note that (1a) implies,

y + b̃ = − ã

2λ
. (2)

We now complete the square on (1b) and use (2):

yTy + 2b̃Ty + b̃T b̃− b̃T b̃ + c = 0(
y + b̃

)T (
y + b̃

)
= b̃T b̃− c(

− ã

2λ

)T (
− ã

2λ

)
= b̃T b̃− c

‖ã‖2

4λ2
= b̃T b̃− c,

and noting λ > 0 and solving for 2λ yields,

2λ =
‖ã‖√
b̃T b̃− c

,

where we note that the factor under the square root is strictly positive owing to the
necessary conditions in part (ii). Using this formula for λ in (2) allows us to compute y:

y = −b̃− ã

‖ã‖

√
b̃T b̃− c

Using y = LTx to solve for x yields the single KKT point,

x = −Q−1
b + a

√
bTQ−1b− c
aTQ−1a

 .

Note that since this problem is feasible (by part (i)) and that the KKT conditions are
necessary (by part (ii)) that this single KKT point must in fact be the global minimum
solution to (P).

11.6(iii). Use the KKT conditions in order to find an optimal solution of the following prob-
lem:

min 2x1 + x2

s.t. 4x21 + x22 − 2 ≤ 0

4x1 + x2 + 3 ≤ 0.

Solution: Define,

f(x) = 2x1 + x2, g1(x) = 4x21 + x22 − 2, g2(x) = 4x1 + x2 + 3,

and note that f , g1, and g2 are all convex. Therefore, the KKT conditions are sufficient to
find a global minimum. First we compute,

∇f =

(
2
1

)
, ∇g1(x) = 2

(
4x1
x2

)
, ∇g2(x) =

(
4
1

)
.
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The KKT conditions then read,

∇f + λ1∇g1 + λ2∇g2 =

(
2
1

)
+ 2λ1

(
4x1
x2

)
+ λ2

(
4
1

)
= 0, (3a)

λ1g1 = λ1
(
4x21 + x22 − 2

)
= 0 (3b)

λ2g2 = λ2 (4x1 + x2 + 3) = 0 (3c)

λ1, λ2 ≥ 0, (3d)

g1(x), g2(x) ≤ 0. (3e)

First we note that λ1, λ2 = 0 is not possible since that violates (3a). If we consider λ1 = 0 and
λ2 6= 0, then (3a) reads, (

2
1

)
+ λ2

(
4
1

)
= 0,

which is not possible since the vectors (2, 1)T and (4, 1)T are linearly independent.
If we allow λ1, λ2 6= 0, then (3b) and (3c) imply,

4x21 + x22 − 2 = 0, 4x1 + x2 + 3 = 0.

The second (linear) expression shows that x2 = −3 − 4x1, and substituting this into the
quadratic condition yields, after simplification,

20x21 + 24x1 + 7 = 0,

whose two solutions are,

x1 = −1

2
,− 7

10
.

Now we have,

x1 = −1

2

(3c)
=⇒ x2 = −1

(3a)
=⇒ (λ1, λ2) =

(
1

2
, 0

)
,

but this violates our assumption that λ2 = 0, so x1 = −1
2 is not possible. On the other hand,

x1 = − 7

10

(3c)
=⇒ x2 = −1

5

(3a)
=⇒ (λ1, λ2) =

(
−1

2
,−6

5

)
,

which violates (3d), and so x1 = − 7
10 is also not possible. Therefore, λ1, λ2 6= 0 also yields no

KKT points.
The final possibility is λ2 = 0, λ1 6= 0. In this case (3a) implies,(

2
1

)
+ 2λ1

(
4x1
x2

)
= 0,

which can only happen if (2, 1)T and (4x1, x2)
T are linearly dependent, i.e., only if x1 = 1

2x2.
Using this condition for x1 along with λ1 6= 0 in (3b) yields,

4

(
1

4
x22

)
+ x22 − 2 = 0 =⇒ x2 = ±1.

Akil Narayan: akil (at) sci.utah.edu 8



Homework 6
5770/6640, ME EN 6025 Introduction to Optimization University of Utah

To determine if either of these options is viable, we again consider (3a), which under the
x1 = 1

2x2 condition reads,(
2
1

)
+ 2λ1x2

(
2
1

)
= 0 =⇒

(
2
1

)
[1 + 2λ1x2] = 0,

implying in particular that λ1 = − 1
2x2

. This condition then disallows x2 = +1. Then in the
case x2 = −1, we have

(x1, x2, λ1, λ2) =

(
−1

2
,−1,

1

2
, 0

)
,

which indeed satisfies (3), and hence is the only KKT point. Since the KKT conditions are

sufficient, then x =
(
−1

2 ,−1
)T

is the optimal solution.

Additional problems:
P1. (6000-level students only) Given n ∈ N, let C be the closed, convex set of n × n

positive semi-definite matrices,

C =
{
A ∈ Rn×n ∣∣ A is symmetric, A � 0

}
.

Given any n × n symmetric matrix A, let PC(A) denote the ‖ · ‖-projection of A onto
C. Show that both of the following statements are true,

PC(A) = UΛ+U
T , ‖ · ‖ = ‖ · ‖2 (the spectral or induced matrix 2-norm)

PC(A) = UΛ+U
T , ‖ · ‖ = ‖ · ‖F (the Frobenius, or entrywise norm)

where A = UΛUT is the eigenvalue decomposition of A, and Λ+ = max{Λ, 0} with the
max function applied componentwise.

Solution: First we consider the 2-norm, ‖ · ‖ = ‖ · ‖2. Given the symmetric matrix A, let

A = UΛUT =

n∑
j=1

λjuju
T
j ,

denote the eigenvalue decomposition of A, where {λj}nj=1 are the eigenvalues (also the diagonal
elements of Λ) and {u}nj=1 are the unit-norm eigenvectors (also the columns of U). We assume
without loss that the eigenvalues are ordered, i.e.,

λ1 ≥ λ2 ≥ . . . ≥ λn,

Note that we may assume λn < 0 without loss, since otherwise, A is itself a positive semidefinite
matrix, and PC(A) = A. First note the following property of the 2-norm for symmetric
matrices,

‖A‖22 = sup
‖u‖2=1

‖Au‖22 = sup
‖u‖2=1

RATA(u) = max
i=1,...,n

|λi|2 = max{λ1,−λn},

where RV (u) is the Rayleigh quotient of V at vector u, and we have used the fact that the
eigenvalue decomposition of ATA is UΛ2UT to maximize the Rayleigh quotient.
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Now let B ∈ C be arbitrary. Using the above property, and recalling that vn is the eigenvector
of A associated to λn, we have

‖B −A‖2 ≥ sup
‖v‖2=1

RB−A(v) ≥ vT
n (B −A)vn = vT

nBvT
n − λn ≥ −λn,

where the last inequality is true since B is positive semi-definite. Thus, ‖B −A‖2 ≥ |λn|. But
we can achieve this lower bound:

B = UΛ+U
T =⇒ ‖A−B‖2 =

∥∥∥∥∥∥
n∑

j=1

max{0,−λj}uju
T
j

∥∥∥∥∥∥
2

= max
i=1,...,n

max{0,−λj} = −λn.

I.e., our choice of B achieves the desired lower bound distance for every element in C, and
thus B is the projection onto C in the ‖ · ‖2 norm.
Now we consider the Frobenius norm, ‖ · ‖ = ‖ · ‖F . Again let B ∈ C be arbitrary. Since the
Frobenius norm is invariant with respect to unitary transforms, we have,

‖B −A‖2F =
∥∥UTBU −Λ

∥∥2
F
.

Note that X := UTBU is also positive semi-definite, and hence is also an element of C. So
we seek to minimize,

‖X −Λ‖2F , X = UTBU ∈ C.

Recall that if X is positive semi-definite, then its diagonal entries must also be non-negative.
Therefore,

‖X −Λ‖2F =
n∑

j=1

(Xj,j − λj)2 +
∑
i 6=j

X2
i,j ≥

n∑
j=1

(max{0,−λj})2 +
∑
i 6=j

X2
i,j ≥

n∑
j=1

(max{0,−λj})2

which is achieved by selecting the diagonal elements of X to equal the diagonal elements of
Λ+, and by choosing the off diagonal elements of X to vanish. Thus, we can achieve the lower
bound,

‖X −Λ‖2F ≥
n∑

j=1

(max{0,−λj})2 ,

by choosing X = Λ+. Hence,

argmin
X∈C

‖X −Λ‖2F = Λ+,

implying in turn that,

PC(A) = argmin
B∈C

‖B −A‖2F = U

(
argmin
X∈C

‖X −Λ‖2F
)
UT = UΛ+U

T ,

proving the result.
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