Department of Mathematics, University of Utah

 Introduction to Optimization

 Introduction to Optimization MATH 5770/6640, ME EN 6025 - Section 001 - Fall 2021
 Homework 5 Solutions
 Convex functions

Due November 16, 2021

Submit your homework assignment as a scanned copy ON CANVAS, to the Homework 5 assignment.

Some of the exercises below are computational. The book problems are explained in Matlab. You need not use Matlab to complete the assignment; numerical simulation with any programming language is acceptable.
Text: Introduction to Nonlinear Optimization, Amir Beck,
Exercises: \# 7.1,
7.3,
7.7,
7.10 (i), (ii), (iv), (v)
7.25

Extra P1,
P2
7.1. For each of the following sets determine whether they are convex or not (explaining your choice).
(i) $C_{1}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\|\boldsymbol{x}\|^{2}=1\right\}$
(ii) $C_{2}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \max _{i=1, \ldots, n} x_{i} \leq 1\right\}$
(iii) $C_{3}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \min _{i=1, \ldots, n} x_{i} \leq 1\right\}$
(iv) $C_{4}=\left\{\boldsymbol{x} \in \mathbb{R}_{++}^{n}: \prod_{i=1}^{n} x_{i} \geq 1\right\}$

Solution:

(i) C_{1} is not convex. Let $\boldsymbol{x} \in \mathbb{R}^{n}$ be any vector with unit norm, so that $\boldsymbol{x} \in C_{1}$. Then $-\boldsymbol{x} \in C_{1}$ as well, but a convex combination of these two,

$$
\frac{1}{2} \boldsymbol{x}+\frac{1}{2}(-\boldsymbol{x})=\mathbf{0},
$$

is clearly not in C_{1} since it does not have unit norm.
(ii) C_{2} is convex. One way to see this is to note that

$$
f(\boldsymbol{x})=\max _{i=1, \ldots, n} x_{i},
$$

is a convex function since it's the pointwise maximum of convex functions. (The function x_{i} is affine and hence convex for all i.) Since $\left.C_{2}=f^{-1}(-\infty, 1]\right)=\operatorname{Lev}(f, 1)$ is the level set of a convex function, it is also convex.
(iii) C_{3} is not convex for any $n \geq 2$. (It is convex for $n=1$.) To see this, let \boldsymbol{x} and \boldsymbol{y} be defined as,

$$
\boldsymbol{x}=(1,2,2,2,2, \ldots), \quad \boldsymbol{y}=(2,1,2,2,2, \ldots) .
$$

Note that $\boldsymbol{x}, \boldsymbol{y} \in C_{3}$. But a convex combination of them,

$$
\frac{1}{2} \boldsymbol{x}+\frac{1}{2} \boldsymbol{y}=(1.5,1.5,2,2,2, \ldots)
$$

which is not in C_{3} since its minimum value is $1.5>1$.
(iv) C_{4} is a convex set. Define $h(\boldsymbol{x})=\sum_{j=1}^{n}-\log x_{j}$ on \mathbb{R}_{++}^{n}, and note tht h is convex on \mathbb{R}_{++}^{n} since $-\log t$ is convex for $t>0$ and h is a conic combination of n such convex functions. Note also that

$$
\prod_{j=1}^{n} x_{j} \geq 1 \quad \Longleftrightarrow \quad \sum_{j=1}^{n}\left(-\log x_{j}\right) \leq 0
$$

so that $C_{4}=h^{-1}((-\infty, 0])=\operatorname{Lev}(h, 0)$. Since C_{4} is the level set of a convex function, it is a convex set.
7.3. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex as well as concave function. Show that f is an affine function; that is, there exist $\boldsymbol{a} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ such that $f(\boldsymbol{x})=\boldsymbol{a}^{T} \boldsymbol{x}+b$ for any $\boldsymbol{x} \in \mathbb{R}^{n}$.

Solution: Define $b=f(\boldsymbol{x})$, and define,

$$
g(\boldsymbol{x})=f(\boldsymbol{x})-b \quad \Longrightarrow \quad g(\mathbf{0})=0
$$

Since the constant function $-b$ is both convex and concave (for any value of b), then g is also both convex and concave, since it's a conic combination of two convex and concave functions. Since g is both convex and concave, then for any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ and any $\lambda \in(0,1)$,

$$
g(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y})=\lambda g(\boldsymbol{x})+(1-\lambda) g(\boldsymbol{y})
$$

Taking $\boldsymbol{y}=0$ and noting that $g(\mathbf{0})=0$ implies,

$$
\begin{equation*}
\frac{1}{\lambda} g(\lambda \boldsymbol{x})=g(\boldsymbol{x}), \quad \lambda \in(0,1) \tag{1}
\end{equation*}
$$

Also, taking \boldsymbol{x} and \boldsymbol{y} as arbitrary and $\lambda=\frac{1}{2}$, we have,

$$
\begin{aligned}
g(\boldsymbol{x})+g(\boldsymbol{y}) & =2 g\left(\frac{1}{2}(\boldsymbol{x}+\boldsymbol{y})\right) \\
& \stackrel{(1)}{=} g(\boldsymbol{x}+\boldsymbol{y}) .
\end{aligned}
$$

As a consequence of $g(\boldsymbol{x})+g(\boldsymbol{y})=g(\boldsymbol{x}+\boldsymbol{y})$ and (1), we have,

$$
g(\alpha \boldsymbol{x}+\beta \boldsymbol{y})=\alpha g(\boldsymbol{x})+\beta g(\boldsymbol{y})
$$

for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, and all $\alpha, \beta \in \mathbb{R}$. Finally, with $e_{j} \in \mathbb{R}^{n}$ the cardinal unit vector in direction j, we have,

$$
\begin{aligned}
g(\boldsymbol{x})=g\left(\sum_{j=1}^{n} x_{j} e_{j}\right) & =\sum_{j=1}^{n} x_{j} g\left(e_{j}\right) \\
& =\sum_{j=1}^{n} x_{j} a_{j}=\boldsymbol{a}^{T} \boldsymbol{x}
\end{aligned}
$$

where we have defined the constants $a_{j}=g\left(e_{j}\right)$ for all j, and \boldsymbol{a} has components a_{j}. Therefore, we have

$$
f(\boldsymbol{x})=g(\boldsymbol{x})+f(0)=\boldsymbol{a}^{T} \boldsymbol{x}+b,
$$

showing that f is affine.
7.7. Let $C \subseteq \mathbb{R}^{n}$ be a convex set. Let f be a convex function over C, and let g be a strictly convex function over C. Show that the sum function $f+g$ is strictly convex over C.

Solution: Let $\boldsymbol{x}, \boldsymbol{y} \in C$, and let $\lambda \in(0,1)$. By definition, we have,

$$
\begin{aligned}
f(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}) & \leq \lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y}) \\
g(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}) & <\lambda g(\boldsymbol{x})+(1-\lambda) g(\boldsymbol{y})
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
(f+g)(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}) & =f(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y})+g(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}) \\
& \leq \lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y})+g(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}) \\
& <\lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y})+\lambda g(\boldsymbol{x})+(1-\lambda) g(\boldsymbol{y}) \\
& =\lambda(f+g)(\boldsymbol{x})+(1-\lambda)(f+g)(\boldsymbol{y}),
\end{aligned}
$$

and hence $f+g$ is strictly convex.
7.10. Show that the following functions are convex over the specified domain C :
(i) $f\left(x_{1}, x_{2}, x_{3}\right)=-\sqrt{x_{1} x_{2}}+2 x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3}$ over \mathbb{R}_{++}^{3}
(ii) $f(\boldsymbol{x})=\|\boldsymbol{x}\|^{4}$ over \mathbb{R}^{n}.
(iv) $f(\boldsymbol{x})=\sqrt{\boldsymbol{x}^{T} \boldsymbol{Q x}+1}$ over \mathbb{R}^{n} where $\boldsymbol{Q} \succeq \mathbf{0}$ is an $n \times n$ matrix.
(v) $f\left(x_{1}, x_{2}, x_{3}\right)=\max \left\{\sqrt{x_{1}^{2}+x_{2}^{2}+20 x_{3}^{2}-x_{1} x_{2}-4 x_{2} x_{3}+1},\left(x_{1}^{2}+x_{2}^{2}+x_{1}+x_{2}+2\right)^{2}\right\}$ over \mathbb{R}^{3}.

Solution:

(i) Define

$$
f_{1}\left(x_{1}, x_{2}, x_{3}\right)=-\sqrt{x_{1} x_{2}}, \quad f_{2}\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3}
$$

so that $f=f_{1}+f_{2}$. By direct computation, we have,

$$
\nabla^{2} f_{1}=\frac{1}{4 \sqrt{x_{1} x_{2}}}\left(\begin{array}{ccc}
\frac{x_{2}}{x_{1}} & -1 & 0 \\
-1 & \frac{x_{1}}{x_{2}} & 0 \\
0 & 0 & 0
\end{array}\right), \quad \quad \nabla^{2} f_{2}=\left(\begin{array}{ccc}
4 & -2 & 0 \\
-2 & 4 & -2 \\
0 & -2 & 6
\end{array}\right)
$$

These formulas can be used to determine that $\nabla^{2} f_{1} \succeq \mathbf{0}$ for $\boldsymbol{x} \in \mathbb{R}_{++}^{3}$ and $\nabla^{2} f_{2} \succeq \mathbf{0}$. Thus, both f_{1} and f_{2} is convex. Since $f=f_{1}+f_{2}$ is a conic combination of convex functions, then f is also convex.
(ii) Write f as $f(\boldsymbol{x})=g(h(\boldsymbol{x}))$, where

$$
g(t)=t^{4}, \quad h(\boldsymbol{x})=\|\boldsymbol{x}\| .
$$

Since $\|\cdot\|$ is a norm, then h is a convex function with range $[0, \infty)$. The function g is convex, and for $t \in[0, \infty)$, the function $g(t)$ is also monotone increasing. Since f is a composition of a convex monotone increasing function (g) with a convex function (h), then f is convex.
(iv) Since $\boldsymbol{Q} \succeq \mathbf{0}$, then it has an orthogonal eigenvalue decomposition,

$$
\boldsymbol{Q}=\boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{T}
$$

where $\boldsymbol{V} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, and $\boldsymbol{\Lambda}$ is a diagonal matrix with non-negative values on the diagonal. Defining

$$
\boldsymbol{A}:=\sqrt{\boldsymbol{\Lambda}} \boldsymbol{V}^{T}
$$

then we can write,

$$
f(\boldsymbol{x})=\sqrt{\boldsymbol{x}^{T} \boldsymbol{Q} \boldsymbol{x}+1}=\sqrt{\|\boldsymbol{A x}\|^{2}+1}=h(g(\boldsymbol{x})),
$$

where

$$
g(\boldsymbol{x})=\|\boldsymbol{A} \boldsymbol{x}\|, \quad \quad h(t)=\sqrt{t^{2}+1} .
$$

A direct computation shows that

$$
h^{\prime \prime}(t)=\left(t^{2}+1\right)^{3 / 2}>0, \quad h^{\prime}(t)=\frac{t}{\sqrt{t^{2}+1}}>0(t \geq 0),
$$

so that for $t \geq 0$, the function h is both monotone increasing and convex. The function g is the composition of an affine function with a norm,

$$
g(\boldsymbol{x})=\|\phi(\boldsymbol{x})\|, \quad \phi(\boldsymbol{x})=\boldsymbol{A} \boldsymbol{x}
$$

and since norms are convex, then g is convex. Finally, $f=h \circ g$ is the composition of a monotone increasing convex function with a convex function, and is hence convex.
(v) We write, $f(\boldsymbol{x})=\max \left\{f_{1}(\boldsymbol{x}), f_{2}(\boldsymbol{x})\right\}$, where

$$
f_{1}(\boldsymbol{x})=\sqrt{x_{1}^{2}+x_{2}^{2}+20 x_{3}^{2}-x_{1} x_{2}-4 x_{2} x_{3}+1}, \quad f_{2}(\boldsymbol{x})=\left(x_{1}^{2}+x_{2}^{2}+x_{1}+x_{2}+2\right)^{2}
$$

so that f is the pointwise maximum of f_{1} and f_{2}. Therefore, if we show that f_{1} and f_{2} are convex, this implies that f is convex. The function f_{1} is convex since it can be written as,

$$
f_{1}(\boldsymbol{x})=h(q(\boldsymbol{x})), \quad q(\boldsymbol{x})=\sqrt{x_{1}^{2}+x_{2}^{2}+20 x_{3}^{2}-x_{1} x_{2}-4 x_{2} x_{3}}=\sqrt{\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}}
$$

where h is the function defined in the solution to part (iv) of this question, and

$$
\boldsymbol{A}=\left(\begin{array}{ccc}
1 & -\frac{1}{2} & 0 \\
-\frac{1}{2} & 1 & -2 \\
0 & -2 & 20
\end{array}\right) \succ \mathbf{0} .
$$

Since $\boldsymbol{A} \succ \mathbf{0}$ and is symmetric, then by the same argument as in the solution to part (iv), there a matrix $\boldsymbol{B} \in \mathbb{R}^{3 \times 3}$ such that $q(\boldsymbol{x})=\sqrt{\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}}=\|\boldsymbol{B} x\|$, and hence q is convex. Since f_{1} is the composition of h (a monotone increasing, convex function) with q (a convex function), then f_{1} is convex.
The function f_{2} is also convex since it can be written as,

$$
f_{2}(\boldsymbol{x})=g(p(\boldsymbol{x})), \quad g(t)=t^{2}, \quad p(\boldsymbol{x})=x_{1}^{2}+x_{2}^{2}+x_{1}+x_{2}+2 .
$$

We can immediately see that $g(t)$ is both monotone increasing and convex for $t \geq 0$. The function p satisfies,

$$
\nabla^{2} p=2 \boldsymbol{I} \succ \mathbf{0}, \quad p(\boldsymbol{x})=\left(x_{1}^{2}+x_{1}+1\right)+\left(x_{2}^{2}+x_{2}+1\right)>0,
$$

and hence is both convex and is strictly positive (hence we need only concern ourselves with $t>0$ for the domain of g). Therefore, since f_{2} is the composition of a monotone increasing and convex function with another convex function, then f_{2} is convex.
7.25. Prove that if f and g are convex, twice differentiable, nondecreasing, and positive on \mathbb{R}, then the product $f g$ is convex over \mathbb{R}. Show by an example that the positivity assumption is necessary to establish the convexity.

Solution: Since f and g are twice-differentiable, we can directly compute the second derivative of $f g$:

$$
\begin{equation*}
(f g)^{\prime \prime}(x)=f^{\prime \prime}(x) g(x)+g^{\prime \prime}(x) f(x)+2 f^{\prime}(x) g^{\prime}(x) . \tag{2}
\end{equation*}
$$

By assumption we have:

- f, g positive, convex $\Longrightarrow f^{\prime \prime}(x) g(x) \geq 0, g^{\prime \prime}(x) f(x) \geq 0$
- f, g nondecreasing $\Longrightarrow f^{\prime}(x) \geq 0, g^{\prime}(x) \geq 0$.

Using the above properties in (2) shows that $(f g)^{\prime \prime}(x) \geq 0$ for all x. I.e., the Hessian of $f g$ is positive semi-definite everywhere, implying that $f g$ is convex.

For an example demonstrating that the positivity assumption is necessary, consider

$$
f(x)=e^{x}, \quad g(x)=e^{x}-4
$$

Both f and g are (strictly) convex, twice-differentiable, and nondecreasing. But g is not positive on \mathbb{R}. Direct computation of $(f g)^{\prime \prime}$ results in,

$$
(f g)^{\prime \prime}(x)=4 e^{x}\left(e^{x}-1\right)<0, x<0
$$

Thus, over domain $x<0$, the function $(f g)$ is actually concave, not convex.

Additional problems:

P1. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is strongly convex if there exists some $\alpha>0$ such that $f(x)-\alpha\|x\|_{2}^{2}$ is convex. Show that strong convexity \Rightarrow strict convexity \Rightarrow convexity. In addition, give counterexamples to show that the reverse implications are not true.

Solution: We start by proving that a strongly convex function must be strictly convex: let f be strongly convex, i.e., there exists some $\alpha>0$ such that $g(\boldsymbol{x})=f(\boldsymbol{x})-\alpha\|\boldsymbol{x}\|_{2}^{2}$ is convex. We first show that $h(\boldsymbol{x})=\alpha\|\boldsymbol{x}\|_{2}^{2}$ is strictly convex: the Hessian is easily computed as,

$$
\nabla^{2} h(\boldsymbol{x})=2 \boldsymbol{I} \succ \mathbf{0},
$$

for all \boldsymbol{x}, establishing strict convexity of h. Turning back to the main goal, let $\lambda \in(0,1)$, and $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}, \boldsymbol{x} \neq \boldsymbol{y}$ be arbitrary. We seek to show the definition of strict convexity:

$$
\begin{equation*}
f(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y})<\lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y}) . \tag{3}
\end{equation*}
$$

Since f is strongly convex, then g is convex, i.e.,

$$
\begin{aligned}
g(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}) & \leq \lambda g(\boldsymbol{x})+(1-\lambda) g(\boldsymbol{y}) \\
f(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y})-\alpha\|\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}\|_{2}^{2} & \leq \lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y})-\lambda \alpha\|\boldsymbol{x}\|_{2}^{2}-(1-\lambda) \alpha\|\boldsymbol{y}\|_{2}^{2} .
\end{aligned}
$$

Rearranging this last inequality yields,

$$
\begin{aligned}
& f(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y})-\lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y}) \leq \alpha\|\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}\|_{2}^{2}-\lambda \alpha\|\boldsymbol{x}\|_{2}^{2}-(1-\lambda) \alpha\|\boldsymbol{y}\|_{2}^{2} \\
& f(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y})-\lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y}) \leq h(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y})-\lambda h(\boldsymbol{x})-(1-\lambda) h(\boldsymbol{y})<0,
\end{aligned}
$$

where the last inequality is true since h is strictly convex. This last inequality is the desired relation (3).
We now seek to prove that a strictly convex function f is also convex. This is direct from the definition, since if f is strictly convex, then it satisfies (3) for any $\lambda \in(0,1)$ and $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$. This immediately implies that

$$
f(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}) \leq \lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y} .
$$

Finally, we furnish counterexamples for the two reverse implications: The function $f(x)=$ 0 is convex by direction verification with the definition, but f is not strictly convex. (E.g., take $x=0, y=1, \lambda=\frac{1}{2}$.). The function $f(x)=x^{4}$ is strictly convex, but is not strongly convex since for any $\alpha>0$, the function $g(x)=x^{4}-\alpha x^{2}$ is not convex: It takes values

$$
g(0)=0,
$$

$$
g(\pm \sqrt{\alpha / 2})=-\frac{\alpha^{2}}{4}<0
$$

so that taking $x=-\sqrt{\alpha / 2}, y=\sqrt{\alpha / 2}$ and $\lambda=\frac{1}{2}$ violates the definition of convexity for g.
P2. (6000-level students only) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be strictly monotone (either increasing or decreasing) such that f has a well-defined functional inverse $f^{-1}: \mathbb{R} \rightarrow \mathbb{R}$. (I.e., the range of f is \mathbb{R} and f is bijective.) Assume f is convex. If f is increasing, what can you say about f^{-1} ? What about if f is decreasing?

Solution: Intuition about what happens is best learned by considering examples (e.g., $f(x)= \pm \log x, e^{ \pm x}$, etc.) or by graphing functions (how is the graph of f^{-1} generated from the graph of f ?). Here we'll just present the main results through proof.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be strictly monotone (either increasing or decreasing), convex, and suppose $f^{-1}: \mathbb{R} \rightarrow \mathbb{R}$ is well-defined and exists. We seek to understand properties of f^{-1}. To that end, let $y_{1}, y_{2} \in \mathbb{R}$ with $y_{1} \neq y_{2}$, and define,

$$
x_{1}:=f^{-1}\left(y_{1}\right), \quad x_{2}:=f^{-1}\left(y_{2}\right),
$$

and so by definition we also have $y_{i}=f\left(x_{i}\right), i=1,2$. Note that also $x_{1} \neq x_{2}$, since otherwise we would have $y_{1}=y_{2}$, which is a contradiction. First note that f^{-1} is also strictly monotone (increasing if f is increasing, decreasing if f is decreasing):

Lemma 1. Under the previously discussed assumptions on f, then f^{-1} is strictly monotone, and is increasing iff f is increasing. f^{-1} is decreasing iff f is decreasing.

To see why this lemma is true, note that f strictly monotone increasing means,

$$
z<w \Longrightarrow f(z)<f(w) .
$$

So suppose that $y_{1}<y_{2}$. We could postulate some relationships between x_{1} and x_{2} :

- $x_{1}>x_{2}$: this cannot happen since f increasing would imply $y_{1}>y_{2}$, which is a contradiction
- $x_{1}=x_{2}$: this cannot happen since $y_{1} \neq y_{2}$, as previously described

Since $x_{1} \not \geq x_{2}$, we have $x_{1}<x_{2}$, showing that f^{-1} is strictly monotone increasing. The same argument shows that if f is strictly monotone decreasing, then f^{-1} is strictly monotone decreasing, showing Lemma 1.
We now turn to exploring possible convexity of f^{-1}. For concreteness, we'll assume f is strictly monotone increasing (as opposed to decreasing). With $y_{1}, y_{2}, x_{1}, x_{2}$ as before, let $\lambda \in(0,1)$ be arbitrary. Since f is convex, we have

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) .
$$

We apply f^{-1} to both sides: since f^{-1} is strictly increasing, this results in

$$
\lambda f^{-1}\left(y_{1}\right)+(1-\lambda) f^{-1}\left(y_{2}\right) \leq f^{-1}\left(\lambda y_{1}+(1-\lambda) y_{2}\right) .
$$

Multiplying this result by -1 , we obtain

$$
\left(-f^{-1}\right)\left(\lambda y_{1}+(1-\lambda) y_{2}\right) \leq \lambda\left(-f^{-1}\right)\left(y_{1}\right)+(1-\lambda)\left(-f^{-1}\right)\left(y_{2}\right),
$$

which establishes that $-f^{-1}$ is convex. I.e., when f is increasing, f^{-1} is concave. A similar argument shows that f^{-1} is convex if f is monotone decreasing. We can summarize this formally:

Proposition 1. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex and strictly monotone, with $f^{-1}: \mathbb{R} \rightarrow \mathbb{R}$ well-defined. Then if f is increasing, f^{-1} is concave. If f is decreasing, then f^{-1} is convex.

