
Department of Mathematics, University of Utah
Introduction to Optimization

MATH 5770/6640, ME EN 6025 – Section 001 – Fall 2021
Homework 5 Solutions

Convex functions

Due November 16, 2021

Submit your homework assignment as a scanned copy ON CANVAS, to the Homework 5

assignment.

Some of the exercises below are computational. The book problems are explained in Mat-
lab. You need not use Matlab to complete the assignment; numerical simulation with any
programming language is acceptable.
Text: Introduction to Nonlinear Optimization, Amir Beck,

Exercises: # 7.1,
7.3,
7.7,
7.10 (i), (ii), (iv), (v)
7.25

Extra P1,
P2

7.1. For each of the following sets determine whether they are convex or not (explaining your
choice).

(i) C1 =
{
x ∈ Rn : ‖x‖2 = 1

}
(ii) C2 = {x ∈ Rn : maxi=1,...,n xi ≤ 1}
(iii) C3 = {x ∈ Rn : mini=1,...,n xi ≤ 1}
(iv) C4 =

{
x ∈ Rn

++ :
∏n

i=1 xi ≥ 1
}

Solution:
(i) C1 is not convex. Let x ∈ Rn be any vector with unit norm, so that x ∈ C1. Then
−x ∈ C1 as well, but a convex combination of these two,

1

2
x +

1

2
(−x) = 0,

is clearly not in C1 since it does not have unit norm.

(ii) C2 is convex. One way to see this is to note that

f(x) = max
i=1,...,n

xi,

is a convex function since it’s the pointwise maximum of convex functions. (The function
xi is affine and hence convex for all i.) Since C2 = f−1(−∞, 1]) = Lev(f, 1) is the level
set of a convex function, it is also convex.
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(iii) C3 is not convex for any n ≥ 2. (It is convex for n = 1.) To see this, let x and y be
defined as,

x = (1, 2, 2, 2, 2, . . .), y = (2, 1, 2, 2, 2, . . .).

Note that x,y ∈ C3. But a convex combination of them,

1

2
x +

1

2
y = (1.5, 1.5, 2, 2, 2, . . .),

which is not in C3 since its minimum value is 1.5 > 1.
(iv) C4 is a convex set. Define h(x) =

∑n
j=1− log xj on Rn

++, and note tht h is convex on
R

n
++ since − log t is convex for t > 0 and h is a conic combination of n such convex

functions. Note also that

n∏
j=1

xj ≥ 1 ⇐⇒
n∑

j=1

(− log xj) ≤ 0,

so that C4 = h−1((−∞, 0]) = Lev(h, 0). Since C4 is the level set of a convex function, it
is a convex set.

7.3. Let f : Rn → R be a convex as well as concave function. Show that f is an affine function;
that is, there exist a ∈ Rn and b ∈ R such that f(x) = aTx + b for any x ∈ Rn.

Solution: Define b = f(x), and define,

g(x) = f(x)− b =⇒ g(0) = 0.

Since the constant function −b is both convex and concave (for any value of b), then g is also
both convex and concave, since it’s a conic combination of two convex and concave functions.
Since g is both convex and concave, then for any x,y ∈ Rn and any λ ∈ (0, 1),

g(λx + (1− λ)y) = λg(x) + (1− λ)g(y).

Taking y = 0 and noting that g(0) = 0 implies,

1

λ
g(λx) = g(x), λ ∈ (0, 1). (1)

Also, taking x and y as arbitrary and λ = 1
2 , we have,

g(x) + g(y) = 2g

(
1

2
(x + y)

)
(1)
= g(x + y).

As a consequence of g(x) + g(y) = g(x + y) and (1), we have,

g(αx + βy) = αg(x) + βg(y)
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for all x,y ∈ Rn, and all α, β ∈ R. Finally, with ej ∈ Rn the cardinal unit vector in direction
j, we have,

g(x) = g

 n∑
j=1

xjej

 =

n∑
j=1

xjg(ej)

=

n∑
j=1

xjaj = aTx,

where we have defined the constants aj = g(ej) for all j, and a has components aj . Therefore,
we have

f(x) = g(x) + f(0) = aTx + b,

showing that f is affine.

7.7. Let C ⊆ Rn be a convex set. Let f be a convex function over C, and let g be a strictly
convex function over C. Show that the sum function f + g is strictly convex over C.

Solution: Let x,y ∈ C, and let λ ∈ (0, 1). By definition, we have,

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

g(λx + (1− λ)y) < λg(x) + (1− λ)g(y)

Therefore,

(f + g) (λx + (1− λ)y) = f(λx + (1− λ)y) + g(λx + (1− λ)y)

≤ λf(x) + (1− λ)f(y) + g(λx + (1− λ)y)

< λf(x) + (1− λ)f(y) + λg(x) + (1− λ)g(y)

= λ(f + g)(x) + (1− λ)(f + g)(y),

and hence f + g is strictly convex.

7.10. Show that the following functions are convex over the specified domain C:
(i) f(x1, x2, x3) = −√x1x2 + 2x21 + 2x22 + 3x23 − 2x1x2 − 2x2x3 over R3

++
(ii) f(x) = ‖x‖4 over Rn.
(iv) f(x) =

√
xTQx + 1 over Rn where Q � 0 is an n× n matrix.

(v) f(x1, x2, x3) = max{
√
x21 + x22 + 20x23 − x1x2 − 4x2x3 + 1, (x21 + x22 + x1 + x2 + 2)2} over

R
3.

Solution:
(i) Define

f1(x1, x2, x3) = −
√
x1x2, f2(x1, x2, x3) = 2x21 + 2x22 + 3x23 − 2x1x2 − 2x2x3

so that f = f1 + f2. By direct computation, we have,

∇2f1 =
1

4
√
x1x2

 x2
x1
−1 0

−1 x1
x2

0

0 0 0

 , ∇2f2 =

 4 −2 0
−2 4 −2
0 −2 6


Akil Narayan: akil (at) sci.utah.edu 3



Homework 5 Solutions
5770/6640, ME EN 6025 Introduction to Optimization University of Utah

These formulas can be used to determine that ∇2f1 � 0 for x ∈ R3
++ and ∇2f2 � 0.

Thus, both f1 and f2 is convex. Since f = f1 + f2 is a conic combination of convex
functions, then f is also convex.

(ii) Write f as f(x) = g(h(x)), where

g(t) = t4, h(x) = ‖x‖.

Since ‖ · ‖ is a norm, then h is a convex function with range [0,∞). The function g is
convex, and for t ∈ [0,∞), the function g(t) is also monotone increasing. Since f is a
composition of a convex monotone increasing function (g) with a convex function (h),
then f is convex.

(iv) Since Q � 0, then it has an orthogonal eigenvalue decomposition,

Q = V ΛV T ,

where V ∈ Rn×n is an orthogonal matrix, and Λ is a diagonal matrix with non-negative
values on the diagonal. Defining

A :=
√

ΛV T ,

then we can write,

f(x) =
√

xTQx + 1 =
√
‖Ax‖2 + 1 = h(g(x)),

where

g(x) = ‖Ax‖, h(t) =
√
t2 + 1.

A direct computation shows that

h′′(t) = (t2 + 1)3/2 > 0, h′(t) =
t√

t2 + 1
> 0 (t ≥ 0),

so that for t ≥ 0, the function h is both monotone increasing and convex. The function
g is the composition of an affine function with a norm,

g(x) = ‖φ(x)‖, φ(x) = Ax,

and since norms are convex, then g is convex. Finally, f = h ◦ g is the composition of a
monotone increasing convex function with a convex function, and is hence convex.

(v) We write, f(x) = max{f1(x), f2(x)}, where

f1(x) =
√
x21 + x22 + 20x23 − x1x2 − 4x2x3 + 1, f2(x) = (x21 + x22 + x1 + x2 + 2)2,

so that f is the pointwise maximum of f1 and f2. Therefore, if we show that f1 and
f2 are convex, this implies that f is convex. The function f1 is convex since it can be
written as,

f1(x) = h(q(x)), q(x) =
√
x21 + x22 + 20x23 − x1x2 − 4x2x3 =

√
xTAx,
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where h is the function defined in the solution to part (iv) of this question, and

A =

 1 −1
2 0

−1
2 1 −2

0 −2 20

 � 0.

Since A � 0 and is symmetric, then by the same argument as in the solution to part (iv),
there a matrix B ∈ R3×3 such that q(x) =

√
xTAx = ‖Bx‖, and hence q is convex.

Since f1 is the composition of h (a monotone increasing, convex function) with q (a
convex function), then f1 is convex.
The function f2 is also convex since it can be written as,

f2(x) = g(p(x)), g(t) = t2, p(x) = x21 + x22 + x1 + x2 + 2.

We can immediately see that g(t) is both monotone increasing and convex for t ≥ 0. The
function p satisfies,

∇2p = 2I � 0, p(x) = (x21 + x1 + 1) + (x22 + x2 + 1) > 0,

and hence is both convex and is strictly positive (hence we need only concern ourselves
with t > 0 for the domain of g). Therefore, since f2 is the composition of a monotone
increasing and convex function with another convex function, then f2 is convex.

7.25. Prove that if f and g are convex, twice differentiable, nondecreasing, and positive on R,
then the product fg is convex over R. Show by an example that the positivity assumption is
necessary to establish the convexity.

Solution: Since f and g are twice-differentiable, we can directly compute the second derivative
of fg:

(fg)′′(x) = f ′′(x)g(x) + g′′(x)f(x) + 2f ′(x)g′(x). (2)

By assumption we have:

• f , g positive, convex =⇒ f ′′(x)g(x) ≥ 0, g′′(x)f(x) ≥ 0

• f , g nondecreasing =⇒ f ′(x) ≥ 0, g′(x) ≥ 0.

Using the above properties in (2) shows that (fg)′′(x) ≥ 0 for all x. I.e., the Hessian of fg is
positive semi-definite everywhere, implying that fg is convex.

For an example demonstrating that the positivity assumption is necessary, consider

f(x) = ex, g(x) = ex − 4

Both f and g are (strictly) convex, twice-differentiable, and nondecreasing. But g is not
positive on R. Direct computation of (fg)′′ results in,

(fg)′′(x) = 4ex(ex − 1) < 0, x < 0.

Thus, over domain x < 0, the function (fg) is actually concave, not convex.

Additional problems:
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P1. A function f : Rn → R is strongly convex if there exists some α > 0 such that
f(x)− α‖x‖22 is convex. Show that strong convexity ⇒ strict convexity ⇒ convexity. In
addition, give counterexamples to show that the reverse implications are not true.

Solution: We start by proving that a strongly convex function must be strictly convex:
let f be strongly convex, i.e., there exists some α > 0 such that g(x) = f(x) − α‖x‖22
is convex. We first show that h(x) = α‖x‖22 is strictly convex: the Hessian is easily
computed as,

∇2h(x) = 2I � 0,

for all x, establishing strict convexity of h. Turning back to the main goal, let λ ∈ (0, 1),
and x,y ∈ Rn, x 6= y be arbitrary. We seek to show the definition of strict convexity:

f(λx + (1− λ)y) < λf(x) + (1− λ)f(y). (3)

Since f is strongly convex, then g is convex, i.e.,

g(λx + (1− λ)y) ≤ λg(x) + (1− λ)g(y)

f(λx + (1− λ)y)− α‖λx + (1− λ)y‖22 ≤ λf(x) + (1− λ)f(y)− λα‖x‖22 − (1− λ)α‖y‖22.

Rearranging this last inequality yields,

f(λx + (1− λ)y)− λf(x) + (1− λ)f(y) ≤ α‖λx + (1− λ)y‖22 − λα‖x‖22 − (1− λ)α‖y‖22
f(λx + (1− λ)y)− λf(x) + (1− λ)f(y) ≤ h(λx + (1− λ)y)− λh(x)− (1− λ)h(y) < 0,

where the last inequality is true since h is strictly convex. This last inequality is the
desired relation (3).

We now seek to prove that a strictly convex function f is also convex. This is direct
from the definition, since if f is strictly convex, then it satisfies (3) for any λ ∈ (0, 1) and
x,y ∈ Rn. This immediately implies that

f(λx + (1− λ)y) ≤ λx + (1− λ)y.

Finally, we furnish counterexamples for the two reverse implications: The function f(x) =
0 is convex by direction verification with the definition, but f is not strictly convex. (E.g.,
take x = 0, y = 1, λ = 1

2 .). The function f(x) = x4 is strictly convex, but is not strongly
convex since for any α > 0, the function g(x) = x4 − αx2 is not convex: It takes values

g(0) = 0, g
(
±
√
α/2

)
= −α

2

4
< 0,

so that taking x = −
√
α/2, y =

√
α/2 and λ = 1

2 violates the definition of convexity for
g.

P2. (6000-level students only) Let f : R → R be strictly monotone (either increasing or
decreasing) such that f has a well-defined functional inverse f−1 : R → R. (I.e., the
range of f is R and f is bijective.) Assume f is convex. If f is increasing, what can you
say about f−1? What about if f is decreasing?
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Solution: Intuition about what happens is best learned by considering examples (e.g.,
f(x) = ± log x, e±x, etc.) or by graphing functions (how is the graph of f−1 generated
from the graph of f?). Here we’ll just present the main results through proof.
Let f : R → R be strictly monotone (either increasing or decreasing), convex, and
suppose f−1 : R → R is well-defined and exists. We seek to understand properties of
f−1. To that end, let y1, y2 ∈ R with y1 6= y2, and define,

x1 := f−1(y1), x2 := f−1(y2),

and so by definition we also have yi = f(xi), i = 1, 2. Note that also x1 6= x2, since
otherwise we would have y1 = y2, which is a contradiction. First note that f−1 is also
strictly monotone (increasing if f is increasing, decreasing if f is decreasing):

Lemma 1. Under the previously discussed assumptions on f , then f−1 is strictly mono-
tone, and is increasing iff f is increasing. f−1 is decreasing iff f is decreasing.

To see why this lemma is true, note that f strictly monotone increasing means,

z < w =⇒ f(z) < f(w).

So suppose that y1 < y2. We could postulate some relationships between x1 and x2:

• x1 > x2: this cannot happen since f increasing would imply y1 > y2, which is a
contradiction

• x1 = x2: this cannot happen since y1 6= y2, as previously described

Since x1 6≥ x2, we have x1 < x2, showing that f−1 is strictly monotone increasing.
The same argument shows that if f is strictly monotone decreasing, then f−1 is strictly
monotone decreasing, showing Lemma 1.
We now turn to exploring possible convexity of f−1. For concreteness, we’ll assume f is
strictly monotone increasing (as opposed to decreasing). With y1, y2, x1, x2 as before, let
λ ∈ (0, 1) be arbitrary. Since f is convex, we have

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

We apply f−1 to both sides: since f−1 is strictly increasing, this results in

λf−1(y1) + (1− λ)f−1(y2) ≤ f−1 (λy1 + (1− λ)y2) .

Multiplying this result by −1, we obtain

(−f−1) (λy1 + (1− λ)y2) ≤ λ(−f−1)(y1) + (1− λ)(−f−1)(y2),

which establishes that −f−1 is convex. I.e., when f is increasing, f−1 is concave. A sim-
ilar argument shows that f−1 is convex if f is monotone decreasing. We can summarize
this formally:

Proposition 1. Suppose f : R→ R is convex and strictly monotone, with f−1 : R→ R
well-defined. Then if f is increasing, f−1 is concave. If f is decreasing, then f−1 is
convex.
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