DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH Introduction to Optimization MATH 5770/6640, ME EN 6025 - Section 001 - Fall 2021 Homework 4 Newton's method and convex sets

Due November 2, 2021

Submit your homework assignment as a scanned copy ON CANVAS, to the Homework 4 assignment.

Some of the exercises below are computational. The book problems are explained in Matlab. You need not use Matlab to complete the assignment; numerical simulation with any programming language is acceptable.

Text: Introduction to Nonlinear Optimization, Amir Beck,

Exercises:	#	5.2,
		6.2,
		6.7,
		6.20

Additional problems:

- **P1.** For each of the following statements, either prove that it is true, or give a counterexample showing that it is false in general.

 - **a.** If C_1 and C_2 are convex, then $C_1 \cup C_2$ is convex. **b.** If C_1 and C_2 are (not necessarily convex) cones, then $C_1 \cup C_2$ is a (not necessarily convex) cone.
 - c. Consider the set of points x defined by finitely many linear inequalities, i.e., the set of points x defined by Ax < b, where A and b are an arbitrary matrix and vector, respectively, of conforming size, and the inequality is true elementwise. Then this set is convex.
 - **d.** A convex set *C* is bounded. **e.** A convex set *C* is closed.

 - **f.** (6000-level students only) If C_1 and C_2 are convex sets, then $conv(C_1) \cup conv(C_2) =$ $\operatorname{conv}(C_1 \cup C_2).$
- **P2.** (6000-level students only) Consider the set of matrices in $\mathbb{R}^{n \times n}$ given by,

$$S_{+}(n) \coloneqq \left\{ \boldsymbol{A} \in \mathbb{R}^{n \times n} \mid \boldsymbol{A} = \boldsymbol{A}^{T} \text{ and } \boldsymbol{A} \succ \boldsymbol{0}
ight\}.$$

Prove that $S_{+}(n)$ is a convex cone.