
Department of Mathematics, University of Utah
Introduction to Optimization

MATH 5770/6640, ME EN 6025 – Section 001 – Fall 2021
Homework 4 Solutions

Newton’s method and convex sets

Due November 2, 2021

Submit your homework assignment as a scanned copy ON CANVAS, to the Homework 4

assignment.

Some of the exercises below are computational. The book problems are explained in Mat-
lab. You need not use Matlab to complete the assignment; numerical simulation with any
programming language is acceptable.
Text: Introduction to Nonlinear Optimization, Amir Beck,

Exercises: # 5.2,
6.2,
6.7,
6.20

Extra: P1,
P2,

5.2. Conside the Freudenstein and Roth test function,

f(x) = f1(x)2 + f2(x)2, x ∈ R2,

where

f1(x = −13 + x1 + ((5− x2)x2 − 2)x2,

f2(x = −29 + x1 + ((x2 + 1)x2 − 14)x2.

(i) Show that the function f has three stationary points. Find them and prove that one is
a global minimizer, one is a strict local minimum and the third is a saddle point.

(ii) Use MATLAB to employ the following three methods on the problem of minimizing f :

1. the gradient method with backtracking and parameters (s, α, β) = (1, 0.5, 0.5).
2. the hybrid Newton’s method with parameters (s, α, β) = (0.5, 0.5).
3. damped Gauss-Newton’s method with a backtracking line search strategy with pa-

rameters (s, α, β) = (1, 0.5, 0.5).

All the algorithms should use the stopping criteria ‖∇f(x)‖ ≤ 10−5. Each algorithm
should be employed four times on the following four starting points: (−50, 7)T , (20, 7)T ,
(20,−18)T , (5,−10)T . For each of the four strating points, compare the number of
iterations and the point to which each method converged. If a method did not converge,
explain why.

Solution: We first compute the stationary points of f . In preparation for this, we compute
the gradient of f1 and f2:

∇f1(x) =

(
1

−3x22 + 10x2 − 2

)
, ∇f2(x) =

(
1

3x22 + 2x2 − 14

)
.
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Stationary points of f are values of x satisfying,

∇f(x) = 2f1(x)∇f1(x) + 2f2(x)∇f2(x) = 0.

Simplifying the above expression, we must find values (x1, x2) satisfying,(
f1(x) + f2(x)

f1(x)[−3x22 + 10x2 − 2] + f2(x)[3x22 + 2x2 − 14]

)
= 0. (1)

The first component of the vector above implies:

f1(x) + f2(x) = 0 =⇒ x1 = 21 + x2(8− 3x2), (2)

so that at any stationary point, x1 must have this value. Then at this value of x1, we have

x1 = 21 + x2(8− 3x2) =⇒
{
f1(x) = 8 + x2(−x22 + 2x2 + 6)
f2(x) = −8− x2(−x22 + 2x2 + 6)

(3)

I.e., at a staionary point x we also have f1(x) = −f2(x). Then the second component of (1)
implies:

f1(x)
∂f1
∂x2

+ f2(x)
∂f2
∂x2

= 0

f1=−f2
=⇒ f1(x)

[
∂f1
∂x2
− ∂f2
∂x2

]
= 0

f1(x)
[
−3x22 + 10x2 − 2− 3x22 − 2x2 + 14

]
= 0.

f1(x)
[
−3x22 + 4x2 + 6

]
= 0.

Thus, to compute stationary points, either −3x22 + 4x2 + 6 = 0, or f1(x) = 0. The first,
quadratic, equation yields solutions,

−3x22 + 4x2 + 6 = 0 =⇒ x2 =
2

3

(
1±

√
11

2

)
.

And enforcing f1 = 0 along with (3) implies,

−8− x2(−x22 + 2x2 + 6) = 0 =⇒ x2 = 4.

where the root at x2 = 4 is found by, e.g., by trial and error or by graphing the expression.
With these three values of x2, we compute three critical points using the expression for x1 in
(2):

SP1 : (x1, x2) = (5, 4)

SP2 : (x1, x2) =

(
15 +

8

3
(1 +

√
11/2),

2

3
(1 +

√
11/2)

)
SP3 : (x1, x2) =

(
15 +

8

3
(1−

√
11/2),

2

3
(1−

√
11/2)

)
.

Note that SP1 was found by enforcing f1(x) = 0, and since f1 = −f2 at stationary points,
then at SP1 we have f(x) = f1(x)2 + f2(x)2 = 0 + 0 = 0. Note that f itself is non-negative,
so that f ≥ 0 always holds. Therefore, SP1 is a global minimum.
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To classify SP2 and SP3, we require the Hessian, which, after some simplification, takes the
form,

∇2f(x) = 2

 2 ∂f1
∂x2

+ ∂f2
∂x2

∂f1
∂x2

+ ∂f2
∂x2

(
∂f1
∂x2

)2
+
(
∂f2
∂x2

)2
+ f1

∂2f1
∂x22

+ f2
∂2f2
∂x22


Note that at any stationary point we have f1 = −f2, and at SP2 and SP3 we also have
∂f1
∂x2
− ∂f2

∂x2
= 0. Using these simplifications in the Hessian, we have:

∇2f(x)
SP2,SP3

= 2

 2 2 ∂f1∂x2

2 ∂f1∂x2
2
(
∂f1
∂x2

)2
+ f1

(
∂2f1
∂x22
− ∂2f2

∂x22

) 
To determine the signs of the eigenvalues of this matrix, we first compute the determinant:

1

4
detH

SP2,SP3
= 4f1

(
∂2f1
∂x22

− ∂2f2
∂x22

)
= −8f1(x)(3x2 + 2).

One can verify directly that f1(x) > 0 at both critical points. From the expressions for x2 in
SP2, SP3, we have 3x2 + 2 < 0 for SP3, but 3x2 + 2 > 0 at SP2. Thus, det∇2f > 0 at SP3
(meaning that both eigenvalues have the same sign), but det∇2f < 0 at SP2 (meaning that
one eigenvalue is positive, and one is negative). Therefore, SP2 is a saddle point.
That SP3 is a local minimum can be determined by evaluting the trace of ∇2f at SP3:

1

2
Tr∇2f = 2 + 2

(
∂f1
∂x2

)2

+ f1

(
∂2f1
∂x22

− ∂2f2
∂x22

)
> 0.

Thus, since both the determinant and trace are positive at SP3, then the Hessian there is
positive-definite, so that SP3 is a local minimum.
We now run the three algorithms described with the given initial conditions, and report the
iteration counts to termination, and identify the stationary points to which the methods con-
verged. The stationary points along with the initialization locations are shown in Figure 1.

x0 = (−50, 7)T x0 = (20, 7)T x0 = (20,−18)T x0 = (5,−10)T

2-5 Gradient descent SP3, 6491 iterations SP3, 6265 iterations SP3, 6320 iterations SP1, 7119 iterations
Hybrid Newton SP1, 9 iterations SP1, 9 iterations SP3, 17 iterations SP3, 14 iterations

Damped Newton SP1, 9 iterations SP1, 9 iterations SP3, 17 iterations SP3, 14 iterations

Table 1: Stationary point identification and number of iterations until convergence for each
method with each starting location. All methods converged successfully.

Python code associated to this problem is available in the Git repo
https://github.com/akilnarayan/2021Fall-Optimization-homework4, in particular the
script problem 5.2.py.
Optimization results are summarized in Table 1. We observe that gradient descent takes far
more iterations than either Newton variant. In this case, both Newton variants behaved in
nearly identical ways. All methods converged to a staionary point. We observe that gradient
descent takes so many iterations that are not optimal in terms of direction taken, and so an
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Figure 1: Contour plot of log10 f in Problem 5.2, overlayed with locations of the stationary
points of f along with the 4 initialization locations for the optimization algorithms.

initialization x0 = (−50, 7)T that is closer to the global minimum SP1 actually converges to
the local minimum SP3 that is far away from the starting location.

6.2. Give an example of two convex sets C1, C2 whose union C1 ∪ C2 is not convex.

Solution: Let C1, C2 ⊂ R with C1 = [0, 1] and C2[2, 3]. Being line segments, both C1 and C2

are convex sets, but C1∪C2 = [0, 1]∪ [2, 3] is not convex since 1.5 = 1
21+ 1

22, and 1, 2 ∈ C1∪C2,
but 1.5 6∈ C1 ∪ C2.

6.7. Let C be a convex set. Prove that cone(C) is a convex set.

Solution: Let C ⊂ Rn, and let x,y ∈ cone(C) and η ∈ [0, 1] be arbitrary. We must show
that ηx+ (1− η)y ∈ cone(C). By definition, we have that there is some collection of vectors
x1, . . . ,xk ∈ cone(C) and some λ ∈ Rk+ such that

x =
k∑
j=1

λjxj .

Similarly, there must be some vectors y1, . . . ,y` ∈ cone(C) and some µ ∈ R`+ such that

y =
∑̀
j=1

µyj .

Then the convex combination ηx+ (1− η)y is given by,

ηx+ (1− η)y =

k∑
j=1

(ηλj)xj +
∑̀
j=1

((1− η)µj)yj . (4)

Akil Narayan: akil (at) sci.utah.edu 4



Homework 4 Solutions
5770/6640, ME EN 6025 Introduction to Optimization University of Utah

Now, for j = 1, . . . , k + `, define vectors zj by,

zj =

{
xj , 1 ≤ j ≤ k

yj−k, k + 1 ≤ j ≤ k + `,

and define scalars τj by

τj =

{
ηλj , 1 ≤ j ≤ k

(1− η)µj−k, k + 1 ≤ j ≤ k + `.

Then (4) can be written as,

ηx+ (1− η)y =
k+∑̀
j=1

τjzj ,

where zj ∈ cone(C) and τj ≥ 0 for all j. Thus, ηx + (1 − η)y ∈ cone(C) and we have shown
that cone(C) is convex.

P1. For each of the following statements, either prove that it is true, or give a counterexample
showing that it is false in general.

a. If C1 and C2 are convex, then C1 ∪ C2 is convex.
b. If C1 and C2 are (not necessarily convex) cones, then C1 ∪ C2 is a (not necessarily

convex) cone.
c. Consider the set of points x defined by finitely many linear inequalities, i.e., the set

of points x defined by Ax ≤ b, where A and b are an arbitrary matrix and vector,
respectively, of conforming size, and the inequality is true elementwise. Then this
set is convex.

d. A convex set C is bounded.
e. A convex set C is closed.
f. (6000-level students only) If C1 and C2 are convex sets, then conv(C1)∪conv(C2) =

conv(C1 ∪ C2).

Solution:

a. This is false. Take C1, C2 ⊂ R with C1 = [0, 1] and C2 = [2, 3]. Then the point 1.5
is on a line segment connecting points 1, 2 ∈ C1 ∪ C2, but 1.5 6∈ C1 ∪ C2.

b. This is true. Let x ∈ C1 ∪ C2 and λ ≥ 0. We seek to show λx ∈ C1 ∪ C2. Since
x ∈ C1 ∪ C2, then either x ∈ C1 or x ∈ C2. If x ∈ C1, then λx ∈ C1 since C1 is a
cone. If x ∈ C2, then λx ∈ C2 since C2 is a cone. Thus, λx ∈ C1 or x ∈ C2 holds,
so that λx ∈ C1 ∪ C2.

c. This is true. Suppose x ∈ Rn and let A be m× n. Then Ax ≤ b is true if all m of
the inequalities,

aTi x ≤ bi, i = 1, . . . ,m,

are true, where aTi is the ith row of A, and bi is the ith component of b. We know
that the set

Ci :=
{
x ∈ Rn

∣∣ aTi x ≤ bi} ,
is a half-space in Rn and is hence convex. Thus,{

x ∈ Rn
∣∣ Ax ≤ b} = ∩mi=1Ci,

and since each Ci is convex, then the right hand side, being an intersection of convex
sets, is itself a convex set.
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d. This is false. In R, the set C = R is unbounded but convex.
e. This is false. In R, the set C = (0, 1) is an open (not closed) set, but is convex.
f. This is false. In R, let C1 = [0, 1] and C2 = [2, 3]. Then conv(C1) = C1 and

conv(C2) = C2, so that

conv(C1) ∪ conv(C2) = [0, 1] ∪ [2, 3]

conv(C1 ∪ C2) = conv([0, 1] ∪ [2, 3]) = [0, 3],

and these two are clearly not equal.
P2. (6000-level students only) Consider the set of matrices in Rn×n given by,

S+(n) :=
{
A ∈ Rn×n

∣∣ A = AT and A � 0
}
.

Prove that S+(n) is a convex cone.
Solution: Let A,B ∈ S+(n). Then by definition, for every x ∈ Rn, we have,

xTAx ≥ 0, xTBx ≥ 0.

To show that S+(n) is a cone, let λ ≥ 0 be arbitrary. Then for any x ∈ Rn, λA satisfies,

xT (λA)x = λxTAx
λ≥0
≥ 0,

so that λA ∈ S+(n). Thus S+(n) is a cone.
To show that S+(n) is convex, let λ ∈ [0, 1]. Then for any x ∈ Rn, λA + (1 − λ)B
satisfies,

xT (λA+ (1− λ)B)x = λxTAx+ (1− λ)xTBx
λ,1−λ≥0
≥ 0,

so that λA+ (1− λ)B ∈ S+(n). Thus S+(n) is convex.
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