Department of Mathematics, University of Utah

 Introduction to Optimization

 Introduction to Optimization MATH 5770/6640, ME EN 6025 - Section 001 - Fall 2021
 Homework 4 Solutions
 Newton's method and convex sets

Due November 2, 2021

Submit your homework assignment as a scanned copy ON CANVAS, to the Homework 4 assignment.

Some of the exercises below are computational. The book problems are explained in Matlab. You need not use Matlab to complete the assignment; numerical simulation with any programming language is acceptable.
Text: Introduction to Nonlinear Optimization, Amir Beck,

Exercises:	\#	5.2,
	6.2,	
	6.7,	
	6.20	
Extra:		P1,
		P2,

5.2. Conside the Freudenstein and Roth test function,

$$
f(\boldsymbol{x})=f_{1}(\boldsymbol{x})^{2}+f_{2}(\boldsymbol{x})^{2}, \quad \boldsymbol{x} \in \mathbb{R}^{2},
$$

where

$$
\begin{aligned}
& f_{1}\left(\boldsymbol{x}=-13+x_{1}+\left(\left(5-x_{2}\right) x_{2}-2\right) x_{2}\right. \\
& f_{2}\left(\boldsymbol{x}=-29+x_{1}+\left(\left(x_{2}+1\right) x_{2}-14\right) x_{2} .\right.
\end{aligned}
$$

(i) Show that the function f has three stationary points. Find them and prove that one is a global minimizer, one is a strict local minimum and the third is a saddle point.
(ii) Use MATLAB to employ the following three methods on the problem of minimizing f :

1. the gradient method with backtracking and parameters $(s, \alpha, \beta)=(1,0.5,0.5)$.
2. the hybrid Newton's method with parameters $(s, \alpha, \beta)=(0.5,0.5)$.
3. damped Gauss-Newton's method with a backtracking line search strategy with parameters $(s, \alpha, \beta)=(1,0.5,0.5)$.
All the algorithms should use the stopping criteria $\|\nabla f(\boldsymbol{x})\| \leq 10^{-5}$. Each algorithm should be employed four times on the following four starting points: $(-50,7)^{T},(20,7)^{T}$, $(20,-18)^{T},(5,-10)^{T}$. For each of the four strating points, compare the number of iterations and the point to which each method converged. If a method did not converge, explain why.

Solution: We first compute the stationary points of f. In preparation for this, we compute the gradient of f_{1} and f_{2} :

$$
\nabla f_{1}(\boldsymbol{x})=\binom{1}{-3 x_{2}^{2}+10 x_{2}-2}, \quad \nabla f_{2}(\boldsymbol{x})=\binom{1}{3 x_{2}^{2}+2 x_{2}-14}
$$

Stationary points of f are values of \boldsymbol{x} satisfying,

$$
\nabla f(\boldsymbol{x})=2 f_{1}(\boldsymbol{x}) \nabla f_{1}(\boldsymbol{x})+2 f_{2}(\boldsymbol{x}) \nabla f_{2}(\boldsymbol{x})=\mathbf{0} .
$$

Simplifying the above expression, we must find values (x_{1}, x_{2}) satisfying,

$$
\begin{equation*}
\binom{f_{1}(\boldsymbol{x})+f_{2}(\boldsymbol{x})}{f_{1}(\boldsymbol{x})\left[-3 x_{2}^{2}+10 x_{2}-2\right]+f_{2}(\boldsymbol{x})\left[3 x_{2}^{2}+2 x_{2}-14\right]}=\mathbf{0} . \tag{1}
\end{equation*}
$$

The first component of the vector above implies:

$$
\begin{equation*}
f_{1}(\boldsymbol{x})+f_{2}(\boldsymbol{x})=0 \Longrightarrow x_{1}=21+x_{2}\left(8-3 x_{2}\right), \tag{2}
\end{equation*}
$$

so that at any stationary point, x_{1} must have this value. Then at this value of x_{1}, we have

$$
x_{1}=21+x_{2}\left(8-3 x_{2}\right) \Longrightarrow\left\{\begin{array}{l}
f_{1}(\boldsymbol{x})=8+x_{2}\left(-x_{2}^{2}+2 x_{2}+6\right) \tag{3}\\
f_{2}(\boldsymbol{x})=-8-x_{2}\left(-x_{2}^{2}+2 x_{2}+6\right)
\end{array}\right.
$$

I.e., at a staionary point \boldsymbol{x} we also have $f_{1}(\boldsymbol{x})=-f_{2}(\boldsymbol{x})$. Then the second component of (1) implies:

$$
\begin{aligned}
& f_{1}(\boldsymbol{x}) \frac{\partial f_{1}}{\partial x_{2}}+f_{2}(\boldsymbol{x}) \frac{\partial f_{2}}{\partial x_{2}}=0 \\
& \stackrel{f_{1}=-f_{2}}{\Longrightarrow} f_{1}(\boldsymbol{x})\left[\frac{\partial f_{1}}{\partial x_{2}}-\frac{\partial f_{2}}{\partial x_{2}}\right]=0 \\
& f_{1}(\boldsymbol{x})\left[-3 x_{2}^{2}+10 x_{2}-2-3 x_{2}^{2}-2 x_{2}+14\right]=0 . \\
& f_{1}(\boldsymbol{x})\left[-3 x_{2}^{2}+4 x_{2}+6\right]=0 .
\end{aligned}
$$

Thus, to compute stationary points, either $-3 x_{2}^{2}+4 x_{2}+6=0$, or $f_{1}(\boldsymbol{x})=0$. The first, quadratic, equation yields solutions,

$$
-3 x_{2}^{2}+4 x_{2}+6=0 \Longrightarrow x_{2}=\frac{2}{3}\left(1 \pm \sqrt{\frac{11}{2}}\right) .
$$

And enforcing $f_{1}=0$ along with (3) implies,

$$
-8-x_{2}\left(-x_{2}^{2}+2 x_{2}+6\right)=0 \Longrightarrow x_{2}=4 .
$$

where the root at $x_{2}=4$ is found by, e.g., by trial and error or by graphing the expression. With these three values of x_{2}, we compute three critical points using the expression for x_{1} in (2):

$$
\begin{aligned}
& \mathrm{SP} 1:\left(x_{1}, x_{2}\right)=(5,4) \\
& \mathrm{SP} 2:\left(x_{1}, x_{2}\right)=\left(15+\frac{8}{3}(1+\sqrt{11 / 2}), \frac{2}{3}(1+\sqrt{11 / 2})\right) \\
& \mathrm{SP} 3:\left(x_{1}, x_{2}\right)=\left(15+\frac{8}{3}(1-\sqrt{11 / 2}), \frac{2}{3}(1-\sqrt{11 / 2})\right) .
\end{aligned}
$$

Note that SP1 was found by enforcing $f_{1}(\boldsymbol{x})=0$, and since $f_{1}=-f_{2}$ at stationary points, then at SP1 we have $f(\boldsymbol{x})=f_{1}(\boldsymbol{x})^{2}+f_{2}(\boldsymbol{x})^{2}=0+0=0$. Note that f itself is non-negative, so that $f \geq 0$ always holds. Therefore, SP1 is a global minimum.

To classify SP2 and SP3, we require the Hessian, which, after some simplification, takes the form,

$$
\nabla^{2} f(\boldsymbol{x})=2\left(\begin{array}{cc}
2 & \frac{\partial f_{1}}{\partial x_{2}}+\frac{\partial f_{2}}{\partial x_{2}} \\
\frac{\partial f_{1}}{\partial x_{2}}+\frac{\partial f_{2}}{\partial x_{2}} & \left(\frac{\partial f_{1}}{\partial x_{2}}\right)^{2}+\left(\frac{\partial f_{2}}{\partial x_{2}}\right)^{2}+f_{1} \frac{\partial^{2} f_{1}}{\partial x_{2}^{2}}+f_{2} \frac{\partial^{2} f_{2}}{\partial x_{2}^{2}}
\end{array}\right)
$$

Note that at any stationary point we have $f_{1}=-f_{2}$, and at SP2 and SP3 we also have $\frac{\partial f_{1}}{\partial x_{2}}-\frac{\partial f_{2}}{\partial x_{2}}=0$. Using these simplifications in the Hessian, we have:

$$
\nabla^{2} f(\boldsymbol{x}) \stackrel{\mathrm{SP} 2, \mathrm{SP} 3}{=} 2\left(\begin{array}{cc}
2 & 2 \frac{\partial f_{1}}{\partial x_{2}} \\
2 \frac{\partial f_{1}}{\partial x_{2}} & 2\left(\frac{\partial f_{1}}{\partial x_{2}}\right)^{2}+f_{1}\left(\frac{\partial^{2} f_{1}}{\partial x_{2}^{2}}-\frac{\partial^{2} f_{2}}{\partial x_{2}^{2}}\right)
\end{array}\right)
$$

To determine the signs of the eigenvalues of this matrix, we first compute the determinant:

$$
\begin{gathered}
\frac{1}{4} \operatorname{det} H \stackrel{\mathrm{SPP}, \mathrm{SP} 3}{=} 4 f_{1}\left(\frac{\partial^{2} f_{1}}{\partial x_{2}^{2}}-\frac{\partial^{2} f_{2}}{\partial x_{2}^{2}}\right) \\
=-8 f_{1}(\boldsymbol{x})\left(3 x_{2}+2\right)
\end{gathered}
$$

One can verify directly that $f_{1}(\boldsymbol{x})>0$ at both critical points. From the expressions for x_{2} in SP2, SP3, we have $3 x_{2}+2<0$ for SP3, but $3 x_{2}+2>0$ at SP2. Thus, $\operatorname{det} \nabla^{2} f>0$ at SP3 (meaning that both eigenvalues have the same sign), but $\operatorname{det} \nabla^{2} f<0$ at SP2 (meaning that one eigenvalue is positive, and one is negative). Therefore, SP 2 is a saddle point.
That SP3 is a local minimum can be determined by evaluting the trace of $\nabla^{2} f$ at SP3:

$$
\frac{1}{2} \operatorname{Tr} \nabla^{2} f=2+2\left(\frac{\partial f_{1}}{\partial x_{2}}\right)^{2}+f_{1}\left(\frac{\partial^{2} f_{1}}{\partial x_{2}^{2}}-\frac{\partial^{2} f_{2}}{\partial x_{2}^{2}}\right)>0
$$

Thus, since both the determinant and trace are positive at SP3, then the Hessian there is positive-definite, so that SP3 is a local minimum.
We now run the three algorithms described with the given initial conditions, and report the iteration counts to termination, and identify the stationary points to which the methods converged. The stationary points along with the initialization locations are shown in Figure 1.

	$\boldsymbol{x}_{0}=(-50,7)^{T}$	$\boldsymbol{x}_{0}=(20,7)^{T}$	$\boldsymbol{x}_{0}=(20,-18)^{T}$	$\boldsymbol{x}_{0}=(5,-10)^{T}$
2-5 Gradient descent	SP3, 6491 iterations	SP3, 6265 iterations	SP3, 6320 iterations	SP1, 7119 iterations
Hybrid Newton	SP1,9 iterations	SP1,9 iterations	SP3, 17 iterations	SP3, 14 iterations
Damped Newton	SP1,9 iterations	SP1,9 iterations	SP3, 17 iterations	SP3, 14 iterations

Table 1: Stationary point identification and number of iterations until convergence for each method with each starting location. All methods converged successfully.

Python code associated to this problem is available in the Git repo
https://github.com/akilnarayan/2021Fall-Optimization-homework4, in particular the script problem_5.2.py.
Optimization results are summarized in Table 1. We observe that gradient descent takes far more iterations than either Newton variant. In this case, both Newton variants behaved in nearly identical ways. All methods converged to a staionary point. We observe that gradient descent takes so many iterations that are not optimal in terms of direction taken, and so an

Figure 1: Contour plot of $\log _{10} f$ in Problem 5.2, overlayed with locations of the stationary points of f along with the 4 initialization locations for the optimization algorithms.
initialization $\boldsymbol{x}_{0}=(-50,7)^{T}$ that is closer to the global minimum SP1 actually converges to the local minimum SP3 that is far away from the starting location.
6.2. Give an example of two convex sets C_{1}, C_{2} whose union $C_{1} \cup C_{2}$ is not convex.

Solution: Let $C_{1}, C_{2} \subset \mathbb{R}$ with $C_{1}=[0,1]$ and $C_{2}[2,3]$. Being line segments, both C_{1} and C_{2} are convex sets, but $C_{1} \cup C_{2}=[0,1] \cup[2,3]$ is not convex since $1.5=\frac{1}{2} 1+\frac{1}{2} 2$, and $1,2 \in C_{1} \cup C_{2}$, but $1.5 \notin C_{1} \cup C_{2}$.
6.7. Let C be a convex set. Prove that cone (C) is a convex set.

Solution: Let $C \subset \mathbb{R}^{n}$, and let $\boldsymbol{x}, \boldsymbol{y} \in \operatorname{cone}(C)$ and $\eta \in[0,1]$ be arbitrary. We must show that $\eta \boldsymbol{x}+(1-\eta) \boldsymbol{y} \in \operatorname{cone}(C)$. By definition, we have that there is some collection of vectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k} \in \operatorname{cone}(C)$ and some $\boldsymbol{\lambda} \in \mathbb{R}_{+}^{k}$ such that

$$
\boldsymbol{x}=\sum_{j=1}^{k} \lambda_{j} \boldsymbol{x}_{j}
$$

Similarly, there must be some vectors $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{\ell} \in \operatorname{cone}(C)$ and some $\boldsymbol{\mu} \in \mathbb{R}_{+}^{\ell}$ such that

$$
\boldsymbol{y}=\sum_{j=1}^{\ell} \mu \boldsymbol{y}_{j}
$$

Then the convex combination $\eta \boldsymbol{x}+(1-\eta) \boldsymbol{y}$ is given by,

$$
\begin{equation*}
\eta \boldsymbol{x}+(1-\eta) \boldsymbol{y}=\sum_{j=1}^{k}\left(\eta \lambda_{j}\right) \boldsymbol{x}_{j}+\sum_{j=1}^{\ell}\left((1-\eta) \mu_{j}\right) \boldsymbol{y}_{j} . \tag{4}
\end{equation*}
$$

Now, for $j=1, \ldots, k+\ell$, define vectors \boldsymbol{z}_{j} by,

$$
\boldsymbol{z}_{j}=\left\{\begin{aligned}
\boldsymbol{x}_{j}, & 1 \leq j \leq k \\
\boldsymbol{y}_{j-k}, & k+1 \leq j \leq k+\ell
\end{aligned}\right.
$$

and define scalars τ_{j} by

$$
\tau_{j}=\left\{\begin{aligned}
\eta \lambda_{j}, & 1 \leq j \leq k \\
(1-\eta) \mu_{j-k}, & k+1 \leq j \leq k+\ell
\end{aligned}\right.
$$

Then (4) can be written as,

$$
\eta \boldsymbol{x}+(1-\eta) \boldsymbol{y}=\sum_{j=1}^{k+\ell} \tau_{j} \boldsymbol{z}_{j}
$$

where $\boldsymbol{z}_{j} \in \operatorname{cone}(C)$ and $\tau_{j} \geq 0$ for all j. Thus, $\eta \boldsymbol{x}+(1-\eta) \boldsymbol{y} \in \operatorname{cone}(C)$ and we have shown that cone (C) is convex.
$\mathbf{P 1}$. For each of the following statements, either prove that it is true, or give a counterexample showing that it is false in general.
a. If C_{1} and C_{2} are convex, then $C_{1} \cup C_{2}$ is convex.
b. If C_{1} and C_{2} are (not necessarily convex) cones, then $C_{1} \cup C_{2}$ is a (not necessarily convex) cone.
c. Consider the set of points \boldsymbol{x} defined by finitely many linear inequalities, i.e., the set of points \boldsymbol{x} defined by $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$, where \boldsymbol{A} and \boldsymbol{b} are an arbitrary matrix and vector, respectively, of conforming size, and the inequality is true elementwise. Then this set is convex.
d. A convex set C is bounded.
e. A convex set C is closed.
f. $\left(\mathbf{6 0 0 0}\right.$-level students only) If C_{1} and C_{2} are convex sets, then $\operatorname{conv}\left(C_{1}\right) \cup \operatorname{conv}\left(C_{2}\right)=$ $\operatorname{conv}\left(C_{1} \cup C_{2}\right)$.

Solution:

a. This is false. Take $C_{1}, C_{2} \subset \mathbb{R}$ with $C_{1}=[0,1]$ and $C_{2}=[2,3]$. Then the point 1.5 is on a line segment connecting points $1,2 \in C_{1} \cup C_{2}$, but $1.5 \notin C_{1} \cup C_{2}$.
b. This is true. Let $x \in C_{1} \cup C_{2}$ and $\lambda \geq 0$. We seek to show $\lambda x \in C_{1} \cup C_{2}$. Since $x \in C_{1} \cup C_{2}$, then either $x \in C_{1}$ or $x \in C_{2}$. If $x \in C_{1}$, then $\lambda x \in C_{1}$ since C_{1} is a cone. If $x \in C_{2}$, then $\lambda x \in C_{2}$ since C_{2} is a cone. Thus, $\lambda x \in C_{1}$ or $x \in C_{2}$ holds, so that $\lambda x \in C_{1} \cup C_{2}$.
c. This is true. Suppose $\boldsymbol{x} \in \mathbb{R}^{n}$ and let \boldsymbol{A} be $m \times n$. Then $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ is true if all m of the inequalities,

$$
\boldsymbol{a}_{i}^{T} \boldsymbol{x} \leq b_{i}, \quad i=1, \ldots, m
$$

are true, where \boldsymbol{a}_{i}^{T} is the i th row of \boldsymbol{A}, and b_{i} is the i th component of \boldsymbol{b}. We know that the set

$$
C_{i}:=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{a}_{i}^{T} \boldsymbol{x} \leq b_{i}\right\}
$$

is a half-space in \mathbb{R}^{n} and is hence convex. Thus,

$$
\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\right\}=\cap_{i=1}^{m} C_{i}
$$

and since each C_{i} is convex, then the right hand side, being an intersection of convex sets, is itself a convex set.
d. This is false. In \mathbb{R}, the set $C=\mathbb{R}$ is unbounded but convex.
e. This is false. In \mathbb{R}, the set $C=(0,1)$ is an open (not closed) set, but is convex.
f. This is false. In \mathbb{R}, let $C_{1}=[0,1]$ and $C_{2}=[2,3]$. Then $\operatorname{conv}\left(C_{1}\right)=C_{1}$ and $\operatorname{conv}\left(C_{2}\right)=C_{2}$, so that

$$
\begin{aligned}
\operatorname{conv}\left(C_{1}\right) \cup \operatorname{conv}\left(C_{2}\right) & =[0,1] \cup[2,3] \\
\operatorname{conv}\left(C_{1} \cup C_{2}\right) & =\operatorname{conv}([0,1] \cup[2,3])=[0,3]
\end{aligned}
$$

and these two are clearly not equal.
P2. (6000-level students only) Consider the set of matrices in $\mathbb{R}^{n \times n}$ given by,

$$
S_{+}(n):=\left\{\boldsymbol{A} \in \mathbb{R}^{n \times n} \mid \boldsymbol{A}=\boldsymbol{A}^{T} \text { and } \boldsymbol{A} \succeq \mathbf{0}\right\}
$$

Prove that $S_{+}(n)$ is a convex cone.
Solution: Let $\boldsymbol{A}, \boldsymbol{B} \in S_{+}(n)$. Then by definition, for every $\boldsymbol{x} \in \mathbb{R}^{n}$, we have,

$$
\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x} \geq 0, \quad \boldsymbol{x}^{T} \boldsymbol{B} \boldsymbol{x} \geq 0
$$

To show that $S_{+}(n)$ is a cone, let $\lambda \geq 0$ be arbitrary. Then for any $\boldsymbol{x} \in \mathbb{R}^{n}, \lambda \boldsymbol{A}$ satisfies,

$$
\boldsymbol{x}^{T}(\lambda \boldsymbol{A}) \boldsymbol{x}=\lambda \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x} \stackrel{\lambda \geq 0}{\geq} 0
$$

so that $\lambda \boldsymbol{A} \in S_{+}(n)$. Thus $S_{+}(n)$ is a cone.
To show that $S_{+}(n)$ is convex, let $\lambda \in[0,1]$. Then for any $\boldsymbol{x} \in \mathbb{R}^{n}, \lambda \boldsymbol{A}+(1-\lambda) \boldsymbol{B}$ satisfies,

$$
\boldsymbol{x}^{T}(\lambda \boldsymbol{A}+(1-\lambda) \boldsymbol{B}) \boldsymbol{x}=\lambda \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}+(1-\lambda) \boldsymbol{x}^{T} \boldsymbol{B} \boldsymbol{x} \stackrel{\lambda, 1-\lambda \geq 0}{\geq} 0
$$

so that $\lambda \boldsymbol{A}+(1-\lambda) \boldsymbol{B} \in S_{+}(n)$. Thus $S_{+}(n)$ is convex.

