Department of Mathematics, University of Utah
 Introduction to Optimization MATH 5770/6640, ME EN 6025 - Section 001 - Fall 2021
 Homework 3
 Least squares and gradient descent

Due October 5, 2021

Submit your homework assignment as a scanned copy ON CANVAS, to the Homework 3 assignment.

Some of the exercises below are computational. The book problems are explained in Matlab. You need not use Matlab to complete the assignment; numerical simulation with any programming language is acceptable.
Text: Introduction to Nonlinear Optimization, Amir Beck,
Exercises: \# 3.1,
3.2,
4.3 (only the first 3 parts, ignore the diagonally scaled portions)

Additional problems:

P1. (Maximum likelihood estimation) Let $\left\{y_{1}, \ldots, y_{M}\right\} \subset \mathbb{R}$ denote M data points on the real line. The overall goal of this problem is to "fit" a probability distribution to these data points.
In particular, we assume that this data arose as (independent, identically distributed) samples from an unknown probability distribution with density $p(y)$. In order to find $p(y)$, we assume further that p corresponds to a normal distribution, i.e., a distribution having density

$$
p(y ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-(y-\mu)^{2} /\left(2 \sigma^{2}\right)\right)
$$

where μ and σ are the unknown mean and standard deviation of the distribution. We will choose the parameters (μ, σ) of this distribution as those parameters that maximize the "likelihood" of the data. In particular, given (μ, σ) and the data $\left\{y_{m}\right\}_{m=1}^{M}$, the likelihood is formally defined as

$$
\mathcal{L}(\mu, \sigma):=\prod_{m=1}^{M} p\left(y_{m} ; \mu, \sigma\right)=\prod_{m=1}^{M} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\left(y_{m}-\mu\right)^{2} /\left(2 \sigma^{2}\right)\right),
$$

which is the probability of seeing independent data $\left\{y_{m}\right\}_{m=1}^{M}$ conditioned on their distribution having parameters (μ, σ). (It is not necessary for you to understand probability to complete this problem.)
The maximum likelihood estimate is the parameter choice that maximizes the likelihood:

$$
\left(\mu_{*}, \sigma_{*}\right)=\underset{\mu \in \mathbb{R}, \sigma \in \mathbb{R}_{+}+}{\operatorname{argmax}} \mathcal{L}(\mu, \sigma) .
$$

Show that a strict global maximum of this optimization problem is given by

$$
\mu_{*}=\frac{1}{M} \sum_{m=1}^{M} y_{m}, \quad \quad \sigma_{*}^{2}=\frac{1}{M} \sum_{m=1}^{M}\left(y_{m}-\mu_{*}\right)^{2}
$$

(You may find it convenient to (i) use the logarithm function to monotonically transform the likelihood, (ii) convert the maximization problem into a minimization problem.)
6000-level students only: Simulate this result - with $M=100$, choose some fixed value of μ, σ and generate data $\left\{y_{m}\right\}_{m=1}^{100}$ from a normal distribution with your prescribed (μ, σ). Compare a histogram of the data against the density $p\left(\cdot ; \mu_{*}, \sigma_{*}\right)$ computed as the maximum likelihood estimate above.

P2. (Maximum likelihood for coin flips) Suppose that you are given the result of 100 flips of a two-sided coin. Let H denote the number of heads observed, and T the number of tails (so that $H+T=100$). Assume that $H, T>0$. The coin may not be fair; it has probability $p \in[0,1]$ that a heads is observed (and $1-p$ for tails). The goal is determine the parameter p that maximizes the likelihood of having observed (H, T). Given that the likelihood is equal to

$$
\mathcal{L}(p)=\binom{100}{H} p^{H}(1-p)^{T},
$$

compute a maximum likelihood estimate for p. Is your computed value a global maximum?

P3. (6000-level students only) Consider the optimization problem,

$$
\min _{\boldsymbol{x} \in S \subset \mathbb{R}^{n}} f(\boldsymbol{x}),
$$

where S is a given subset of \mathbb{R}^{n} and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a given function. Prove that if $g: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly monotonic increasing function, then

$$
\underset{\boldsymbol{x} \in S \subset \mathbb{R}^{n}}{\operatorname{argmax}} f(\boldsymbol{x})=\underset{\boldsymbol{x} \in S \subset \mathbb{R}^{n}}{\operatorname{argmax}} g(f(\boldsymbol{x})), \quad \underset{\boldsymbol{x} \in S \subset \mathbb{R}^{n}}{\operatorname{argmin}} f(\boldsymbol{x})=\underset{\boldsymbol{x} \in S \subset \mathbb{R}^{n}}{\operatorname{argmin}} g(f(\boldsymbol{x})) .
$$

