
Department of Mathematics, University of Utah
Introduction to Optimization

MATH 5770/6640, ME EN 6025 – Section 001 – Fall 2021
Homework 3 Solutions

Least squares and gradient descent

Due October 5, 2021

Text: Introduction to Nonlinear Optimization, Amir Beck,

Exercises: # 3.1,
3.2,
4.3 (only the first 3 parts, ignore the diagonally scaled portions)

Extra: P1,
P2,
P3,

3.1. Let A ∈ Rm×n, b ∈ Rn, L ∈ Rp×n, and λ ∈ R++. Consider the regularized least squares
problem,

(RLS) min
x∈Rn

‖Ax− b‖2 + λ‖Lx‖2.

Show that (RLS) has a unique solution if and only if Null(A)∩Null(L) = {0}, where here for
a matrix B, Null(B) is the null space of B given by {x : Bx = 0}.

Solution: Since the objective function is quadratic, the minimization problem (RLS) has a
unique solution if and only if the Hessian is positive definite. The Hessian of the objective is,

1

2
∇2f = ATA + λLTL, f(x) = ‖Ax− b‖2 + λ‖Lx‖2.

Now let x ∈ Rn\{0} be arbitrary. Defining y := Ax and z := Lx, then we have,

xT∇2fx = 2xTATAx + 2λxTLTLx = 2‖y‖2 + 2λ‖z‖2.

We therefore conclude that xT (∇2f)x ≥ 0, and equals 0 if and only if ‖y‖ = ‖z‖ = 0 (since
λ > 0). Since ‖ · ‖ is a norm, then ‖y‖ = ‖z‖ = 0 if and only if y = z = 0.
In summary, (RLS) has a unique solution if and only if either y 6= 0 or z 6= 0. This happens
if and only if,

Ax 6= 0 or Lx 6= 0.

which means that we require x 6= 0 to satisfy either x 6∈ Null(A) or x 6∈ Null(L). Therefore,
(RLS) has a unique solution if and only if we cannot find any x ∈ Rn\{0} that satisfies
x ∈ Null(A) ∩Null(L), i.e., if and only if Null(A) ∩Null(L) = {0}.

3.2. Generate thirty points (xi, yi), i = 1, 2, . . . , 30 by the Matlab code
randn(’seed’, 314);

x = linspace(0, 1, 30)’;

y = 2*x.^2 - 3x+1+0.05randn(size(x));
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Figure 1: Plot associated to problem 3.2 from the text, showing a least squares quadratic
polynomial fit (solid blue line) to noisy evaluations of a quadratic polynomial (red dots).

Find the quadratic function y = ax2 + bx + c that best fits the points in the least squares
sense. Indicate what are the parameters a, b, c found by the least squares solution, and plot
the points along with the derived quadratic function. The resulting plot should look like the
one in Figure 3.5.

Solution: Python (not Matlab) code associated to this problem is available in the Git repo
https://github.com/akilnarayan/2021Fall-Optimization-homework3, in particular the
script problem 3.2.py. The textual output from running this script reads,

The least squares fitted polynomial has the form

1.9248 x^2 + -2.9126 x + 0.9808,

so that the coefficients are a = 1.9248, b = −2.9126, and c = 0.9808, which are close to the
expected values of (a, b, c) = (2,−3, 1). The deviation is caused by the noise added to the
evaluations. The plot generated by this script is shown in Figure 1. Note that subsequent runs
of this script will produce slightly different results due to the randomness of the noise.

4.3. Consider the quadratic minimization problem,

min{xTAx : x ∈ R5},

where A is the 5× 5 Hilbert matrix defined by,

Ai,j =
1

i+ j − 1
, i, j = 1, 2, 3, 4, 5.

The matrix can be constructed via the Matla command A = hilb(5). Run the following
methods and compare the number of iterations required by each of the methods when the
initial vector x0 = (1, 2, 3, 4, 5)T to obtain a solution x with ‖∇f(x)‖ ≤ 10−4:

• gradient method with backtracking stepsize rula nd parameters α = 0.5, β = 0.5, s = 1;

• gradient method with backtracking stepsize rula nd parameters α = 0.1, β = 0.5, s = 1;
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• gradient method with exact line search;

Solution: Python (not Matlab) code associated to this problem is available in the Git repo
https://github.com/akilnarayan/2021Fall-Optimization-homework3, in particular the
script problem 4.3.py. The results are graphed in Figure 2. The matrix A is positive-
definite, and so the exact solution to this problem is x = 0 with function value 0. Note
that all methods require a substantial number of iterations. The initial choice of (s, α, β) for
backtracking α = 0.5 requires more iterations than the alternative α = 0.1, but not much
improvement is gained. (Recall that decreasing α allows one to take more steps since this
loosens the tolerance criterion regarding objective improvement relative to gradient value.)
Using exact linesearch substantially improves the number of iterations, but still requires more
than 1000 iterations. The lesson here is that simple first-order gradient-based methods can
perform quite poorly, even in relatively small dimensions, n = 5. The reason for this behavior
is that the matrix A is poorly conditioned.

0 1000 2000 3000
Iteration index k

10 4

10 2

100

Backtracking, s = 1, = 0.5, = 0.5
3301 iterations

Function value f(xk)

0 1000 2000 3000
Iteration index k

10 3

10 1

101

Gradient norm || f(xk)||

0 1000 2000 3000
Iteration index k

10 4

10 2

100

Backtracking, s = 1, = 0.1, = 0.5
3732 iterations

Function value f(xk)

0 1000 2000 3000
Iteration index k

10 3

10 1

101

Gradient norm || f(xk)||

0 500 1000
Iteration index k

10 4

10 2

100

Exact linesearch
1271 iterations

Function value f(xk)

0 500 1000
Iteration index k

10 3

10 1

101

Gradient norm || f(xk)||

Figure 2: Plot associated to problem 4.3, showing the number of iterations required for each
method, along with a log of the function value and gradient norm versus iteration count.

Additional problems:
P1. (Maximum likelihood estimation) Let {y1, . . . , yM} ⊂ R denote M data points on the

real line. The overall goal of this problem is to “fit” a probability distribution to these
data points.
In particular, we assume that this data arose as (independent, identically distributed)
samples from an unknown probability distribution with density p(y). In order to find
p(y), we assume further that p corresponds to a normal distribution, i.e., a distribution
having density

p(y;µ, σ) =
1

σ
√

2π
exp(−(y − µ)2/(2σ2)),

Akil Narayan: akil (at) sci.utah.edu 3



Homework 3 Solutions
5770/6640, ME EN 6025 Introduction to Optimization University of Utah

where µ and σ are the unknown mean and standard deviation of the distribution. We will
choose the parameters (µ, σ) of this distribution as those parameters that maximize the
“likelihood” of the data. In particular, given (µ, σ) and the data {ym}Mm=1, the likelihood
is formally defined as

L(µ, σ) :=

M∏
m=1

p(ym;µ, σ) =

M∏
m=1

1

σ
√

2π
exp(−(ym − µ)2/(2σ2)),

which is the probability of seeing independent data {ym}Mm=1 conditioned on their distri-
bution having parameters (µ, σ). (It is not necessary for you to understand probability
to complete this problem.)
The maximum likelihood estimate is the parameter choice that maximizes the likelihood:

(µ∗, σ∗) = argmax
µ∈R,σ∈R++

L(µ, σ).

Show that a strict global maximum of this optimization problem is given by

µ∗ =
1

M

M∑
m=1

ym, σ2∗ =
1

M

M∑
m=1

(ym − µ∗)2.

(You may find it convenient to (i) use the logarithm function to monotonically transform
the likelihood, (ii) convert the maximization problem into a minimization problem.)
6000-level students only: Simulate this result – with M = 100, choose some fixed
value of µ, σ and generate data {ym}100m=1 from a normal distribution with your prescribed
(µ, σ). Compare a histogram of the data against the density p(·;µ∗, σ∗) computed as the
maximum likelihood estimate above.

Solution: We are attempting to maximize the function L. Since log is a strictly mono-
tone increasing function, then using a variant of the result in problem P3, we know
that,

argmax
µ,σ

L(µ, σ)
P3
= argmax

µ,σ
logL(µ, σ) = argmin

µ,σ
−L(µ, σ),

where the second equality uses the fact that maxmimizing f is identical to minimizing
−f . We will therefore compute

argmin
µ,σ

− logL(µ, σ) = argmin
µ,σ

(
M

2
log(2π) +M log σ +

1

2σ2

M∑
m=1

(ym − µ)2

)
.

Note that the domain we are minimizing over is (µ, σ) ∈ R× (0,∞), since the likelihood
is well-defined if and only if σ > 0. On this domain, the funciton − logL is smooth (i.e.,
has continuous derivatives). We proceed to compute stationary points, which are given
by solutions to

∇ (− logL(µ, σ)) = 0.

By direct computation,

d

dµ
(− logL) =

1

σ2

M∑
m=1

(µ− ym) = 0,
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is solved by

µ∗ =
1

M

M∑
m=1

ym. (1)

The second stationary point condition is,

d

dσ
(− logL) =

M

σ
− 1

σ3

M∑
m=1

(ym − µ)2 = 0,

where we must use µ = µ∗ to satisfy the first stationary point condition. Therefore,
multiplying the above by σ3 results in,

σ2∗ =
1

M

M∑
m=1

(ym − µ∗)2. (2)

We now assume that σ2∗ > 0: if it equals 0, then this stationary point is outside the valid
domain σ ∈ (0,∞), and this optimization problem has no solution. (This assumption is
not strong since it implies only that the data {ym}Mm=1 is not constant.) To investigate
second-order optimality of the stationary point (µ∗, σ∗), we compute the Hessian.

∇2 (− logL) =
1

σ4

(
Mσ2 2σS1
2σS1 −Mσ2 + 3S2

)
,

where S1 and S2 are given by,

S1 =

M∑
m=1

(ym − µ), S2 =

M∑
m=1

(ym − µ)2.

Note that, if µ = µ∗, then S1 = 0, and S2 = Mσ2∗ (see (1) and (2)). Therefore, at the
stationary point (µ∗, σ∗), the Hessian takes the simplified form,

∇2 (− logL)
∣∣
(µ∗,σ∗)

=
1

σ4∗

(
Mσ2∗ 0

0 −Mσ2∗ + 3Mσ2∗

)
=
M

σ2∗

(
1 0
0 2

)
,

which is clearly positive-definite (the eigenvalue are λ = M/σ2∗, 2M/σ2∗ > 0).
Therefore, the stationary point (µ, σ) = (µ∗, σ∗) is a strict local minimum of − logL.
Note that this must also be a strict global minimum: − logL is a smooth function ev-
erywhere in its domain, so if any other point (µ, σ) were a local minimum, then it must
also be a stationary point. But we have determined the only stationary point; therefore
our local minimum is actually a global one over the interior of the domain. Since the
boundary of the domain (σ = 0) is not contained in the set, we conclude that our sta-
tionary point is the strict global minimum.

The simulation of this problem is again given in the repo located at https://github.

com/akilnarayan/2021Fall-Optimization-homework3, in the script problem P1.py.
The results are shown in Figure 3, demonstrating that the density function defined by
the maximum likelihood estimate is a reasonable fit to the data’s empirical histogram.
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Figure 3: Plot associated to problem P1, showing histogram of data generated from a normal
distribution compared to the maximum likelihood estimate defined by (µ∗, σ∗).

P2. (Maximum likelihood for coin flips) Suppose that you are given the result of 100 flips
of a two-sided coin. Let H denote the number of heads observed, and T the number of
tails (so that H + T = 100). Assume that H,T > 0. The coin may not be fair; it has
probability p ∈ [0, 1] that a heads is observed (and 1− p for tails). The goal is determine
the parameter p that maximizes the likelihood of having observed (H,T ). Given that
the likelihood is equal to

L(p) =

(
100
H

)
pH(1− p)T ,

compute a maximum likelihood estimate for p. Is your computed value a global maxi-
mum?

Solution: First we note that for any H,T > 0, L(0) = L(1) = 0. Also, for any
p ∈ (0, 1), L(p) > 0. Therefore, in order to maximize this likelihood, we need only
consider the interior interval p ∈ (0, 1), since both boundary points have strictly smaller
likelihood than any point in the interior. In this interior, we again exercise the logarithm
map,

argmax
p∈(0,1)

L(p) = argmax
p∈(0,1)

logL(p),

and we proceed to optimize the log-likelihood. This is given by:

logL(p) = log

(
100
H

)
+H log p+ T log(1− p),

which has gradient and Hessian,

d

dp
logL(p) =

H

p
− T

1− p
,

d2

dp2
logL(p) = −H

p2
− T

(1− p)2
.

The stationary point is then given by p∗ = H
H+T = H

100 . The Hessian for every p ∈ (0, 1)
is negative, so that p = p∗ is actually the strict global maximum of logL for p ∈ (0, 1),
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and hence is also the strict global maximum for L for p ∈ [0, 1].

P3. (6000-level students only) Consider the optimization problem,

min
x∈S⊂Rn

f(x),

where S is a given subset of Rn and f : Rn → R is a given function. Prove that if
g : R→ R is a strictly monotonic increasing function, then

argmax
x∈S⊂Rn

f(x) = argmax
x∈S⊂Rn

g(f(x)), argmin
x∈S⊂Rn

f(x) = argmin
x∈S⊂Rn

g(f(x)).

Solution: We first show the minimum property. Since g is a strictly monotonic in-
creasing function, then g(y) < g(z) when y < z. This is the key property we will use.
Indeed, first define

S− := argmin
x∈S

f(x),

which means by definition that for any x∗ ∈ S−,

f(x∗) = f(x) ∀x ∈ S−, (3)

f(x∗) < f(x) ∀x ∈ S\S−. (4)

First, we have

g(f(x∗)) = g(f(x)) ∀x ∈ S−,

for any function g due to property (3). Due to the strict monotonicty of g and property
(4), we also have

g(f(x∗)) < g(f(x)) ∀x ∈ S\S−.

Combining the two previous equations shows that

(a) g(f(x∗)) < g(f(x)) for any pair of points x∗ ∈ S− and x ∈ S\S−
(b) g(f(x∗)) = g(f(x)) for any pair of points x∗,x ∈ S−.

Thus, by definition S− = argminx∈S g(f(x)). We have therefore proven the minimum
property.
The maximum property is a similar proof. Defining

S+ := argmax
x∈S

f(x),

then by definition

f(x∗) = f(x) ∀x ∈ S+, (5)

f(x∗) > f(x) ∀x ∈ S\S+. (6)

Therefore,

g(f(x∗)) = g(f(x)) ∀x∗,x ∈ S+,

for any function g, and since g is strictly monotone, then

g(f(x∗)) > g(f(x)) ∀x∗ ∈ S+, x ∈ S\S+.

These two previous relations shows by definition that S+ = argmaxx∈S g(f(x)).

Akil Narayan: akil (at) sci.utah.edu 7


