# Department of Mathematics, University of Utah 

## Introduction to Optimization

MATH 5770/6640, ME EN 6025 - Section 001 - Fall 2021
Homework 2 Solutions
Optima and optimality conditions
Due September 21, 2021

Text: Introduction to Nonlinear Optimization, Amir Beck,

$$
\begin{array}{lll}
\text { Exercises: } & \# & 2.1, \\
& 2.2, \\
& 2.4, \\
& 2.6, \\
& 2.11, \\
& 2.13(\mathrm{i}, \mathrm{ii}), \\
& 2.15(\mathrm{i}, \mathrm{iii}, \mathrm{iv}, \mathrm{vii}), \\
& 2.17(\mathrm{i}, \mathrm{iii}, \mathrm{vi}, \mathrm{vii}), \\
& 2.18
\end{array}
$$

2.1. Find the global minimum and maximum points of the function $f(x, y)=x^{2}+$ $y^{2}+2 x-3 y$ over the unit ball $S=B[\mathbf{0}, 1]=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$.

Let $\boldsymbol{a}^{T}=(2,3)^{T}$, and note that $2 x-3 y=\left\langle\boldsymbol{a},(x, y)^{T}\right\rangle$. Therefore, by the CauchySchwarz inequality,

$$
\begin{align*}
& f(x, y)=x^{2}+y^{2}+2 x-3 y \stackrel{r^{2}=x^{2}+y^{2}}{\leq} r^{2}+\|\boldsymbol{a}\|_{2} r, \\
& f(x, y)=x^{2}+y^{2}+2 x-3 y \stackrel{r^{2}=x^{2}+y^{2}}{\geq} r^{2}-\|\boldsymbol{a}\|_{2} r, \tag{1}
\end{align*}
$$

where equality is achieved in each case if and only if $(x, y)$ is parallel to $\boldsymbol{a}$. Therefore, if we consider maximization, then we have,

$$
f(x, y) \leq g_{+}(r):=r^{2}+r \sqrt{13},
$$

with equality achieved exactly when $(x, y)^{T}=r \frac{\boldsymbol{a}}{\|\boldsymbol{a}\|_{2}}$. Since the feasible set $S$ is the unit ball, i.e., for all points satisfying $0 \leq r \leq 1$, we seek to maximize $g_{+}$for $r \in[0,1]$. Since $g_{+}$is monotonic increasing on $[0,1]$, then its maximum is attained at $r=1$, i.e., we have,

$$
\max _{(x, y) \in B[0,1]} f(x, y)=\max _{r \in[0,1]} g_{+}(r)=g_{+}(1)=1+\sqrt{13},
$$

and furthermore, $g_{+}(1)=f(x, y)$ when $(x, y)^{T}=\frac{\boldsymbol{a}}{\|\boldsymbol{a}\|_{2}}$, i.e.,

$$
\underset{(x, y) \in B[0,1]}{\operatorname{argmax}} f(x, y)=\left(\frac{2}{\sqrt{13}},-\frac{3}{\sqrt{13}}\right),
$$

with maximum value $1+\sqrt{13}$.

To compute the minimum value, we return to (1), and with similar logic conclude,

$$
\min _{(x, y) \in B[0,1]} f(x, y)=\min _{r \in[0,1]} g_{-}(r), \quad \quad g_{-}(r):=r^{2}-r \sqrt{13} .
$$

where this time we make the identification $(x, y)^{T}=-r \frac{\boldsymbol{a}}{\|\boldsymbol{a}\|_{2}}$ in order to achieve equality in (1) using the Cauchy-Schwarz inequality. In this case, $g_{-}$is monotonically decreasing function of $r$ on $[0,1]$ since $g_{-}^{\prime}(r)=2 r-\sqrt{13}<0$. Therefore, the minimum occurs again at $r=1$, i.e.,

$$
\underset{(x, y) \in B[0,1]}{\operatorname{argmin}} f(x, y)=\left(-\frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}}\right),
$$

with minimum value $1-\sqrt{13}$.
2.2. Let $\boldsymbol{a} \in \mathbb{R}^{n}$ be a nonzero vetor. Show that the maximum of $\boldsymbol{a}^{T} x$ over $B[\mathbf{0}, 1]=$ $\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\|\boldsymbol{x}\| \leq 1\right\}$ is attained at $\boldsymbol{x}^{*}=\frac{\boldsymbol{a}}{\|\boldsymbol{a}\|}$ and that the maximal value if $\|\boldsymbol{a}\|$.

With $r=\|\boldsymbol{x}\|$, the Cauchy-Schwarz inequality implies,

$$
\begin{equation*}
\max _{\boldsymbol{x} \in B[\mathbf{0}, 1]} \boldsymbol{a}^{T} \boldsymbol{x} \leq \max _{\boldsymbol{x} \in B[\mathbf{0}, 1]}\|\boldsymbol{a}\|\|\boldsymbol{x}\|=\max _{\|\boldsymbol{x}\| \leq 1}\|\boldsymbol{a}\|\|\boldsymbol{x}\|=\|\boldsymbol{a}\|, \tag{2}
\end{equation*}
$$

where equality is achieved above if and only if $\boldsymbol{x}=r \frac{\boldsymbol{a}}{\|\boldsymbol{a}\|}$. Since we also know from above that the maximum is achieved when $\|\boldsymbol{x}\|=1$, then we require a vector $\boldsymbol{x}$ satisfying both,

$$
\boldsymbol{x}=r \frac{\boldsymbol{a}}{\|\boldsymbol{a}\|}, \quad\|\boldsymbol{x}\|=1
$$

implying that $\boldsymbol{x}=\boldsymbol{a} /\|\boldsymbol{a}\|$, achieving maximum value $\|\boldsymbol{a}\|$ as shown by (2).
2.4. Show that if $\boldsymbol{A}, \boldsymbol{B}$ are $n \times n$ positive semidefinite matrices, then their sum $\boldsymbol{A}+\boldsymbol{B}$ is also positive semidefinite.

Let $\boldsymbol{x} \in \mathbb{R}^{n}$ be arbitrary. Then,

$$
\boldsymbol{x}^{T}(\boldsymbol{A}+\boldsymbol{B}) \boldsymbol{x}=\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}+\boldsymbol{x}^{T} \boldsymbol{B} \boldsymbol{x} \stackrel{\boldsymbol{A}, \boldsymbol{B} \succeq 0}{\geq} 0,
$$

showing that $\boldsymbol{A}+\boldsymbol{B} \succeq \mathbf{0}$.
2.6. Let $\boldsymbol{B} \in \mathbb{R}^{n \times k}$ and let $\boldsymbol{A}=\boldsymbol{B} \boldsymbol{B}^{T}$.
(i) Prove $\boldsymbol{A}$ is positive semidefinite.
(ii) Prove that $\boldsymbol{A}$ is positive definite if and only if $\boldsymbol{B}$ as full row rank.

Let $\boldsymbol{x} \in \mathbb{R}^{n}$ be arbitrary. Defining $\boldsymbol{y}:=\boldsymbol{B}^{T} \boldsymbol{x}$, then

$$
\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{x}^{T} \boldsymbol{B} \boldsymbol{B}^{T} \boldsymbol{x}=\boldsymbol{y}^{T} \boldsymbol{y}=\|\boldsymbol{y}\|_{2}^{2} \geq 0,
$$

since $\|\cdot\|_{2}$ is a norm. This proves (i), that $\boldsymbol{A} \succeq \mathbf{0}$.
To prove (ii), assume $\boldsymbol{x} \neq \mathbf{0}$, and note that $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=\|\boldsymbol{y}\|_{2}^{2}$ can equal zero if and only if $\boldsymbol{y}=\mathbf{0}$. Note that in order for this to happen, $\boldsymbol{x}$ must be a nonzero vector satsifying,

$$
\boldsymbol{y}=\boldsymbol{B}^{T} \boldsymbol{x}=\mathbf{0}
$$

implying in turn that $\boldsymbol{x}$ must be a non-trivial vector in the kernel of $\boldsymbol{B}^{T}$ in order for $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}$ to vanish. The Fundamental Theorem of Linear Algebra guarantees that the kernel of $\boldsymbol{B}^{T}$ is empty (i.e., has dimension equal to 0 ) if and only if $\boldsymbol{B}^{T}$ has linearly independent columns, i.e., if and only if $\boldsymbol{B}$ as linearly independent rows, i.e., if and only if $\boldsymbol{B}$ has full row rank. Thus, $\boldsymbol{A} \succ \mathbf{0}$ if and only if $\boldsymbol{B}$ has full row rank.
2.11. Let $\boldsymbol{d}=\Delta_{n}$ ( $\Delta_{n}$ being the unit-simplex $)$. Show that the $n \times n$ matrix $\boldsymbol{A}$ defined by

$$
A_{i, j}=\left\{\begin{aligned}
d_{i}-d_{i}^{2}, & i=j, \\
-d_{i} d_{j}, & i \neq j,
\end{aligned}\right.
$$

is positive semidefinite.
Note that $\boldsymbol{A}$ is a symmetric matrix: $A_{i, j}=A_{j, i}$. If $\boldsymbol{d} \in \Delta_{n}$, then its entries $d_{i}$ all satisfy $0 \leq d_{i} \leq 1$ for $i=1, \ldots, n$, and also $d_{i}=1-\sum_{j \neq i} d_{j}$. This implies first that

$$
d_{i} \geq d_{i}^{2} \quad \Longrightarrow \quad A_{i, i} \geq 0
$$

and second that

$$
\sum_{j \neq i}\left|A_{i, j}\right|=d_{i}\left(\sum_{j \neq i} d_{j}\right)=d_{i}\left(1-d_{i}\right)=d_{i}-d_{i}^{2}=\left|A_{i, i}\right| .
$$

Thus, $\boldsymbol{A}$ is a symmetric matrix with non-negative entries on the diagonal that is diagonally dominant. By Theorem 2.25, $\boldsymbol{A} \succeq \mathbf{0}$.
2.13. For each of the following matrices determine whether they are positive/negative semidefinite/definite or indefinite.
(i) $\boldsymbol{A}=\left(\begin{array}{llll}2 & 2 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 1 & 3\end{array}\right)$

The matrix $\boldsymbol{A}$ is positive semidefinite. To see why, first define the $2 \times 2$ matrices

$$
\boldsymbol{A}_{1}=\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right), \boldsymbol{A}_{2} \quad=\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)
$$

Note that $\boldsymbol{A}_{1}$ is positive semidefinite (its eigenvalues are 0,4 ), and $\boldsymbol{A}_{2}$ is positive definite (its eigenvalues are 2,4). Therefore, given any $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{T} \in$ $\mathbb{R}^{4}$, we have,

$$
\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=\left(x_{1}, x_{2}\right) \boldsymbol{A}_{1}\left(x_{1}, x_{2}\right)^{T}+\left(x_{3}, x_{4}\right) \boldsymbol{A}_{2}\left(x_{3}, x_{4}\right)^{T} \geq 0,
$$

since $\boldsymbol{A}_{1} \succeq \mathbf{0}$ and $\boldsymbol{A}_{\mathbf{2}} \succ \mathbf{0}$. The matrix $\boldsymbol{A}$ cannot be cannot be positive definite since choosing $\boldsymbol{x}=(1,-1,0,0)^{T} \in \mathbb{R}^{4}$ results in $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=0$. Therefore, $\boldsymbol{A} \succeq \mathbf{0}$.
(ii) $\boldsymbol{B}=\left(\begin{array}{lll}2 & 2 & 2 \\ 2 & 3 & 3 \\ 2 & 3 & 3\end{array}\right)$ By direct computation, i.e., computing the roots of $\operatorname{det}(\boldsymbol{B}-$ $\lambda \boldsymbol{I})=-\lambda\left(\lambda^{2}-8 \lambda+4\right)$, the eigenvalues of $\boldsymbol{B}$ are $0,4 \pm 2 \sqrt{3}$. Therefore, $\boldsymbol{B}$ is also positive semidefinite.
2.15. For each of the following functions, determine whether it is coercive or not:
(i) $f\left(x_{1}, x_{2}\right)=x_{1}^{4}+x_{2}^{4}$.

This function is coercive: as $\|\boldsymbol{x}\| \rightarrow \infty$, we must have either $\left|x_{1}\right| \rightarrow \infty$ and/or $\left|x_{2}\right| \rightarrow \infty$. Thus, for large $\|\boldsymbol{x}\|$, we have either $\left|x_{1}\right|^{4}=x_{1}^{4} \rightarrow \infty$ and/or $\left|x_{2}\right|^{4}=x_{2}^{4} \rightarrow \infty$. Since both $x_{1}^{4}$ and $x_{2}^{4}$ are non-negative, then

$$
\lim _{\|\boldsymbol{x}\| \rightarrow \infty} f(\boldsymbol{x}) \geq \lim _{\|\boldsymbol{x}\| \rightarrow \infty} \min \left\{x_{1}^{4}, x_{2}^{4}\right\}=\infty
$$

(iii) $f\left(x_{1}, x_{2}\right)=2 x_{1}^{2}-8 x_{1} x_{2}+x_{2}^{2}$.

This function is not coercive: along the line $x_{1}=x_{2}$ we have $f\left(x_{1}, x_{2}\right)=$ $-5 x_{1}^{2}$. Then sending $\|\boldsymbol{x}\| \rightarrow \infty$ by taking $\boldsymbol{x}=(k, k)^{T}$ as $k \uparrow \infty$ shows that $f(x) \rightarrow-\infty$
(iv) $f\left(x_{1}, x_{2}\right)=4 x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}$.

This function is coercive:

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right)^{2}+3 x_{1}^{2}+x_{2}^{2} \geq x_{1}^{2}+x_{2}^{2}=\|\boldsymbol{x}\|^{2},
$$

so that $f \uparrow \infty$ as $\|\boldsymbol{x}\| \uparrow \infty$.
(vii) $f\left(x_{1}, x_{2}\right)=\frac{\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}}{\|\boldsymbol{x}\|+1}$, where $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is positive definite.

This function is coercive: Since $\boldsymbol{A} \succ \mathbf{0}$, then it smallest eigenvalue $\lambda_{\min }(\boldsymbol{A})$ satisfies $\lambda_{\min }(\boldsymbol{A})>0$. Since the extremal eigenvalues of $\boldsymbol{A}$ bound the possible values of the Rayleigh quotient, we therefore have,

$$
\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x} \geq\|\boldsymbol{x}\|^{2} \lambda_{\min }(\boldsymbol{A}) .
$$

Therefore,

$$
f(\boldsymbol{x})=\frac{\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}}{\|\boldsymbol{x}\|+1} \geq \lambda_{\min }(\boldsymbol{A}) \frac{\|\boldsymbol{x}\|^{2}}{\|\boldsymbol{x}\|+1},
$$

Since $\lambda_{\min }(\boldsymbol{A})>0$, we therefore have that $f \uparrow \infty$ as $\|\boldsymbol{x}\| \uparrow \infty$.
2.17. For each of the following functions, find all the stationary points and classify them according to whether they are saddle points, strict/nonstrict local/global minimum/maximum points:
(i) $f\left(x_{1}, x_{2}\right)=\left(4 x_{1}^{2}-x_{2}\right)^{2}$.

We have,

$$
\nabla f\left(x_{1}, x_{2}\right)=2\left(4 x_{1}^{2}-x_{2}\right)\binom{8 x_{1}}{-1},
$$

so that there are infinitely many stationary points lying along the curve defined by $x_{2}=4 x_{1}^{2}$ (which is a parabola). Note that $f\left(x_{1}, x_{2}\right) \geq 0$ for any $\left(x_{1}, x_{2}\right)$, and $f\left(x_{1}, x_{2}\right)=0$ if and only if $\left(x_{1}, x_{2}\right)$ is a stationary point satisfying $x_{2}=4 x_{1}^{2}$. Therefore, the stationary points are all points of the form $\left(k, 4 k^{2}\right)$ for any $k \in \mathbb{R}$, and they are all nonstrict global and local minima.
(iii) $f\left(x_{1}, x_{2}\right)=2 x_{2}^{3}-6 x_{2}^{2}+3 x_{1}^{2} x_{2}$.

We have,

$$
\nabla f\left(x_{1}, x_{2}\right)=3\binom{2 x_{1} x_{2}}{2 x_{2}^{2}-4 x_{2}+x_{1}^{2}}
$$

The first component of the gradient vanishes if and only if $x_{1}=0$ and/or $x_{2}=0$. If $x_{1}=0$, then the second component vanishes when $x_{2}=0,2$. Therefore, two stationary points are $(0,0)$ and $(0,2)$. If instead we force $x_{2}=0$, then the second component requires $x_{1}=0$, which is a point we have already recorded. The Hessian is given by

$$
\nabla^{2} f\left(x_{1}, x_{2}\right)=6\left(\begin{array}{cc}
x_{2} & x_{1} \\
x_{1} & 2\left(x_{2}-1\right)
\end{array}\right) .
$$

At the stationary point $(0,2)$,

$$
\nabla^{2} f(0,2)=12 \boldsymbol{I} \succ \mathbf{0},
$$

so that $(0,2)$ is a strict local minimum. It cannot be a global minimum since $\lim _{x_{2} \rightarrow-\infty} f\left(0, x_{2}\right)=-\infty$. At the stationary point $(0,0)$,

$$
\nabla^{2} f(0,0)=\left(\begin{array}{cc}
0 & 0 \\
0 & -12
\end{array}\right) \preceq \mathbf{0},
$$

which is inconclusive. However, one can see that $(0,0)$ is a saddle point: along $x_{1}=0$, then $f\left(0, x_{2}\right)=2 x_{2}^{3}-6 x_{2}^{2}$, which is negative for small $x_{2}$. But along $x_{1}=\sqrt{2 x_{2}}$, we have $f\left(\sqrt{2 x_{2}}, x_{2}\right)=2 x_{2}^{3}$, which is positive for small $x_{2}>0$. Therefore, the two stationary points are $(0,0)$ which is a strict local minimum, and $(0,0)$, which is a saddle point.
(vi) $f\left(x_{1}, x_{2}\right)=2 x_{1}^{2}+3 x_{2}^{2}-2 x_{1} x_{2}+2 x_{1}-3 x_{2}$.

The function $f$ is a quadratic function whose Hessian is

$$
\nabla^{2} f=\left(\begin{array}{cc}
4 & -2 \\
-2 & 6
\end{array}\right)
$$

which is positive definite. Therefore, there is exactly 1 stationary point and it is a global minimum. The gradient is given by,

$$
\nabla f\left(x_{1}, x_{2}\right)=\binom{4 x_{1}-2 x_{2}+2}{-2 x_{1}+6 x_{2}-3}
$$

and therefore the stationary point is $\left(x_{1}, x_{2}\right)=\left(-\frac{3}{10}, \frac{2}{5}\right)$, and it is a strict global minimum.
(vii) $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+4 x_{1} x_{2}+x_{2}^{2}+x_{1}-x_{2}$.

This is again a quadratic function; the Hessian is

$$
\nabla f^{2}=\left(\begin{array}{ll}
2 & 4 \\
4 & 2
\end{array}\right)
$$

whose eigenvalues are $-2,6$, so the Hessian is indefinite. Therefore, stationary points are saddle points. The gradient is

$$
\nabla f\left(x_{1}, x_{2}\right)=\binom{2 x_{1}+4 x_{2}+1}{4 x_{1}+2 x_{2}-1}
$$

so the stationary point is $\left(x_{1}, x_{2}\right)=\left(\frac{1}{2},-\frac{1}{2}\right)$, and it is a saddle point.
2.18. Let $f$ be a twice continuously differentiable function over $\mathbb{R}^{n}$. Suppose that $\nabla^{2} f(\boldsymbol{x}) \succ \mathbf{0}$ for any $\boldsymbol{x} \in \mathbb{R}^{n}$. Prove that a stationary point of $f$ is necessarily a strict global minimum point.

Suppose $\boldsymbol{x}_{*}$ is a stationary point, i.e., $\nabla f\left(\boldsymbol{x}_{*}\right)=\mathbf{0}$. By Taylor's theorem, we can represent $f(\boldsymbol{x})$ for any $\boldsymbol{x} \in \mathbb{R}^{n}$ not equal to $\boldsymbol{x}_{*}$ by expanding around the stationary point $\boldsymbol{x}_{*}$ :

$$
f(\boldsymbol{x})=f\left(\boldsymbol{x}_{*}\right)+\nabla f\left(\boldsymbol{x}_{*}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{*}\right)+\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}_{*}\right)^{T} \nabla^{2} f(\boldsymbol{z})\left(\boldsymbol{x}-\boldsymbol{x}_{*}\right)^{T},
$$

for some $\boldsymbol{z} \in\left[\boldsymbol{x}_{*}, \boldsymbol{x}\right]$. The above relation simplifies to

$$
f(\boldsymbol{x})-f\left(\boldsymbol{x}_{*}\right)=\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}_{*}\right)^{T} \nabla^{2} f(\boldsymbol{z})\left(\boldsymbol{x}-\boldsymbol{x}_{*}\right)^{T}>0,
$$

where the inequality is true since $\nabla^{2} f \succ \mathbf{0}$ at every point and $\boldsymbol{x} \neq \boldsymbol{x}_{*}$. Thus, $f(\boldsymbol{x})>f\left(\boldsymbol{x}_{*}\right)$ for every $\boldsymbol{x} \neq \boldsymbol{x}_{*}$, showing that $\boldsymbol{x}_{*}$ is a strict global minimum point.

## Additional problems:

P1. Define

$$
\boldsymbol{A}=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right) .
$$

Using your favorite software, visualize a plot of the Rayleigh quotient $f(\boldsymbol{x})=$ $R_{\boldsymbol{A}}(\boldsymbol{x})$ for $\boldsymbol{x} \in[-3,3]^{2} \backslash\{\mathbf{0}\}$, and generate a contour plot for $f$. Use this visualization to verify the maximum and minimum values of $f$, as well as the set of $\boldsymbol{x}$ that are maximizers and minimizers.
The matrix $\boldsymbol{A}$ is symmetric and has orthogonal eigenvalue decomposition,

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{T}, \quad \boldsymbol{\Lambda}=\left(\begin{array}{cc}
0 & 0 \\
0 & 5
\end{array}\right), \quad \boldsymbol{U}=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right) .
$$

We therefore analytically know the maximum and minimum of the Rayleigh quotient $f(\boldsymbol{x})$. In particular,

$$
\max _{\boldsymbol{x} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}} f(\boldsymbol{x})=5, \quad \min \boldsymbol{x} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\} f(\boldsymbol{x})=0,
$$

and,

$$
\begin{array}{r}
\underset{\boldsymbol{x} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}}{\operatorname{argmax}} f(\boldsymbol{x})=\left\{k(1,2)^{T} \mid k \in \mathbb{R}, k \neq 0\right\} \\
\operatorname{argmin} \boldsymbol{x} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\} f(\boldsymbol{x})=\left\{k(2,-1)^{T} \mid k \in \mathbb{R}, k \neq 0\right\} .
\end{array}
$$

Thus, we expect $f$ to have a maximum value of 5 along the line with equation $2 x_{1}-x_{2}=0$ (with $\boldsymbol{x} \neq \mathbf{0}$ ), and $f$ should have a minimum value of 0 along the line with equation $x_{1}+2 x_{2}=0$. These are visually verified with the plots shown in Figure 1. Code reproducing this plot is available at https://github.com/akilnarayan/2021Fall-Optimization-homework2.


Figure 1: Visualization of the Rayleigh quotient (left) and its contour levels (right) associated to Problem P1.

