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MATH 5770/6640, ME EN 6025 – Section 001 – Fall 2021
Homework 2 Solutions

Optima and optimality conditions

Due September 21, 2021

Text: Introduction to Nonlinear Optimization, Amir Beck,

Exercises: # 2.1,
2.2,
2.4,
2.6,
2.11,
2.13(i, ii),
2.15(i, iii, iv, vii),
2.17(i,iii,vi,vii),
2.18

2.1. Find the global minimum and maximum points of the function f(x, y) = x2 +
y2 + 2x− 3y over the unit ball S = B[0, 1] =

{
(x, y) : x2 + y2 ≤ 1

}
.

Let aT = (2, 3)T , and note that 2x − 3y =
〈
a, (x, y)T

〉
. Therefore, by the Cauchy-

Schwarz inequality,

f(x, y) = x2 + y2 + 2x− 3y
r2=x2+y2

≤ r2 + ‖a‖2r,

f(x, y) = x2 + y2 + 2x− 3y
r2=x2+y2

≥ r2 − ‖a‖2r, (1)

where equality is achieved in each case if and only if (x, y) is parallel to a. Therefore,
if we consider maximization, then we have,

f(x, y) ≤ g+(r) := r2 + r
√

13,

with equality achieved exactly when (x, y)T = r a
‖a‖2 . Since the feasible set S is

the unit ball, i.e., for all points satisfying 0 ≤ r ≤ 1, we seek to maximize g+ for
r ∈ [0, 1]. Since g+ is monotonic increasing on [0, 1], then its maximum is attained
at r = 1, i.e., we have,

max
(x,y)∈B[0,1]

f(x, y) = max
r∈[0,1]

g+(r) = g+(1) = 1 +
√

13,

and furthermore, g+(1) = f(x, y) when (x, y)T = a
‖a‖2 , i.e.,

argmax
(x,y)∈B[0,1]

f(x, y) =

(
2√
13
,− 3√

13

)
,

with maximum value 1 +
√

13.
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To compute the minimum value, we return to (1), and with similar logic conclude,

min
(x,y)∈B[0,1]

f(x, y) = min
r∈[0,1]

g−(r), g−(r) := r2 − r
√

13.

where this time we make the identification (x, y)T = −r a
‖a‖2 in order to achieve

equality in (1) using the Cauchy-Schwarz inequality. In this case, g− is monotonically
decreasing function of r on [0, 1] since g′−(r) = 2r −

√
13 < 0. Therefore, the

minimum occurs again at r = 1, i.e.,

argmin
(x,y)∈B[0,1]

f(x, y) =

(
− 2√

13
,

3√
13

)
,

with minimum value 1−
√

13.

2.2. Let a ∈ Rn be a nonzero vetor. Show that the maximum of aTx over B[0, 1] =
{x ∈ Rn : ‖x‖ ≤ 1} is attained at x∗ = a

‖a‖ and that the maximal value if ‖a‖.

With r = ‖x‖, the Cauchy-Schwarz inequality implies,

max
x∈B[0,1]

aTx ≤ max
x∈B[0,1]

‖a‖‖x‖ = max
‖x‖≤1

‖a‖‖x‖ = ‖a‖, (2)

where equality is achieved above if and only if x = r a
‖a‖ . Since we also know from

above that the maximum is achieved when ‖x‖ = 1, then we require a vector x
satisfying both,

x = r
a

‖a‖
, ‖x‖ = 1,

implying that x = a/‖a‖, achieving maximum value ‖a‖ as shown by (2).

2.4. Show that if A,B are n × n positive semidefinite matrices, then their sum
A + B is also positive semidefinite.

Let x ∈ Rn be arbitrary. Then,

xT (A + B)x = xTAx + xTBx
A,B�0
≥ 0,

showing that A + B � 0.

2.6. Let B ∈ Rn×k and let A = BBT .
(i) Prove A is positive semidefinite.
(ii) Prove that A is positive definite if and only if B as full row rank.

Let x ∈ Rn be arbitrary. Defining y := BTx, then

xTAx = xTBBTx = yTy = ‖y‖22 ≥ 0,

since ‖ · ‖2 is a norm. This proves (i), that A � 0.
To prove (ii), assume x 6= 0, and note that xTAx = ‖y‖22 can equal zero if and
only if y = 0. Note that in order for this to happen, x must be a nonzero vector
satsifying,

y = BTx = 0,
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implying in turn that x must be a non-trivial vector in the kernel of BT in order for
xTAx to vanish. The Fundamental Theorem of Linear Algebra guarantees that the
kernel of BT is empty (i.e., has dimension equal to 0) if and only if BT has linearly
independent columns, i.e., if and only if B as linearly independent rows, i.e., if and
only if B has full row rank. Thus, A � 0 if and only if B has full row rank.

2.11. Let d = ∆n (∆n being the unit-simplex). Show that the n × n matrix A
defined by

Ai,j =

{
di − d2i , i = j,
−didj , i 6= j,

is positive semidefinite.

Note that A is a symmetric matrix: Ai,j = Aj,i. If d ∈ ∆n, then its entries di all
satisfy 0 ≤ di ≤ 1 for i = 1, . . . , n, and also di = 1−

∑
j 6=i dj . This implies first that

di ≥ d2i =⇒ Ai,i ≥ 0,

and second that

∑
j 6=i

|Ai,j | = di

∑
j 6=i

dj

 = di (1− di) = di − d2i = |Ai,i|.

Thus, A is a symmetric matrix with non-negative entries on the diagonal that is
diagonally dominant. By Theorem 2.25, A � 0.

2.13. For each of the following matrices determine whether they are positive/neg-
ative semidefinite/definite or indefinite.

(i) A =


2 2 0 0
2 2 0 0
0 0 3 1
0 0 1 3


The matrix A is positive semidefinite. To see why, first define the 2×2 matrices

A1 =

(
2 2
2 2

)
,A2 =

(
3 1
1 3

)
.

Note that A1 is positive semidefinite (its eigenvalues are 0, 4), and A2 is posi-
tive definite (its eigenvalues are 2, 4). Therefore, given any x = (x1, x2, x3, x4)

T ∈
R

4, we have,

xTAx = (x1, x2)A1(x1, x2)
T + (x3, x4)A2(x3, x4)

T ≥ 0,

since A1 � 0 and A2 � 0. The matrix A cannot be cannot be positive definite
since choosing x = (1,−1, 0, 0)T ∈ R4 results in xTAx = 0. Therefore, A � 0.

(ii) B =

 2 2 2
2 3 3
2 3 3

 By direct computation, i.e., computing the roots of det(B−

λI) = −λ(λ2 − 8λ+ 4), the eigenvalues of B are 0, 4± 2
√

3. Therefore, B is
also positive semidefinite.
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2.15. For each of the following functions, determine whether it is coercive or not:
(i) f(x1, x2) = x41 + x42.

This function is coercive: as ‖x‖ → ∞, we must have either |x1| → ∞ and/or
|x2| → ∞. Thus, for large ‖x‖, we have either |x1|4 = x41 → ∞ and/or
|x2|4 = x42 →∞. Since both x41 and x42 are non-negative, then

lim
‖x‖→∞

f(x) ≥ lim
‖x‖→∞

min{x41, x42} =∞.

(iii) f(x1, x2) = 2x21 − 8x1x2 + x22.
This function is not coercive: along the line x1 = x2 we have f(x1, x2) =
−5x21. Then sending ‖x‖ → ∞ by taking x = (k, k)T as k ↑ ∞ shows that
f(x)→ −∞

(iv) f(x1, x2) = 4x21 + 2x1x2 + 2x22.
This function is coercive:

f(x1, x2) = (x1 + x2)
2 + 3x21 + x22 ≥ x21 + x22 = ‖x‖2,

so that f ↑ ∞ as ‖x‖ ↑ ∞.

(vii) f(x1, x2) = xTAx
‖x‖+1 , where A ∈ Rn×n is positive definite.

This function is coercive: Since A � 0, then it smallest eigenvalue λmin(A)
satisfies λmin(A) > 0. Since the extremal eigenvalues of A bound the possible
values of the Rayleigh quotient, we therefore have,

xTAx ≥ ‖x‖2λmin(A).

Therefore,

f(x) =
xTAx

‖x‖+ 1
≥ λmin(A)

‖x‖2

‖x‖+ 1
,

Since λmin(A) > 0, we therefore have that f ↑ ∞ as ‖x‖ ↑ ∞.

2.17. For each of the following functions, find all the stationary points and clas-
sify them according to whether they are saddle points, strict/nonstrict local/global
minimum/maximum points:

(i) f(x1, x2) = (4x21 − x2)2.
We have,

∇f(x1, x2) = 2(4x21 − x2)
(

8x1
−1

)
,

so that there are infinitely many stationary points lying along the curve defined
by x2 = 4x21 (which is a parabola). Note that f(x1, x2) ≥ 0 for any (x1, x2), and
f(x1, x2) = 0 if and only if (x1, x2) is a stationary point satisfying x2 = 4x21.
Therefore, the stationary points are all points of the form (k, 4k2) for any
k ∈ R, and they are all nonstrict global and local minima.

(iii) f(x1, x2) = 2x32 − 6x22 + 3x21x2.
We have,

∇f(x1, x2) = 3

(
2x1x2

2x22 − 4x2 + x21

)
.
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The first component of the gradient vanishes if and only if x1 = 0 and/or
x2 = 0. If x1 = 0, then the second component vanishes when x2 = 0, 2.
Therefore, two stationary points are (0, 0) and (0, 2). If instead we force
x2 = 0, then the second component requires x1 = 0, which is a point we
have already recorded. The Hessian is given by

∇2f(x1, x2) = 6

(
x2 x1
x1 2(x2 − 1)

)
.

At the stationary point (0, 2),

∇2f(0, 2) = 12I � 0,

so that (0, 2) is a strict local minimum. It cannot be a global minimum since
limx2→−∞ f(0, x2) = −∞. At the stationary point (0, 0),

∇2f(0, 0) =

(
0 0
0 −12

)
� 0,

which is inconclusive. However, one can see that (0, 0) is a saddle point: along
x1 = 0, then f(0, x2) = 2x32 − 6x22, which is negative for small x2. But along
x1 =

√
2x2, we have f(

√
2x2, x2) = 2x32, which is positive for small x2 > 0.

Therefore, the two stationary points are (0, 0) which is a strict local minimum,
and (0, 0), which is a saddle point.

(vi) f(x1, x2) = 2x21 + 3x22 − 2x1x2 + 2x1 − 3x2.
The function f is a quadratic function whose Hessian is

∇2f =

(
4 −2
−2 6

)
,

which is positive definite. Therefore, there is exactly 1 stationary point and it
is a global minimum. The gradient is given by,

∇f(x1, x2) =

(
4x1 − 2x2 + 2
−2x1 + 6x2 − 3

)
,

and therefore the stationary point is (x1, x2) =
(
− 3

10 ,
2
5

)
, and it is a strict

global minimum.
(vii) f(x1, x2) = x21 + 4x1x2 + x22 + x1 − x2.

This is again a quadratic function; the Hessian is

∇f2 =

(
2 4
4 2

)
,

whose eigenvalues are −2, 6, so the Hessian is indefinite. Therefore, stationary
points are saddle points. The gradient is

∇f(x1, x2) =

(
2x1 + 4x2 + 1
4x1 + 2x2 − 1

)
,

so the stationary point is (x1, x2) =
(
1
2 ,−

1
2

)
, and it is a saddle point.
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2.18. Let f be a twice continuously differentiable function over Rn. Suppose that
∇2f(x) � 0 for any x ∈ Rn. Prove that a stationary point of f is necessarily a
strict global minimum point.

Suppose x∗ is a stationary point, i.e., ∇f(x∗) = 0. By Taylor’s theorem, we can
represent f(x) for any x ∈ Rn not equal to x∗ by expanding around the stationary
point x∗:

f(x) = f(x∗) +∇f(x∗)(x− x∗) +
1

2
(x− x∗)

T∇2f(z)(x− x∗)
T ,

for some z ∈ [x∗,x]. The above relation simplifies to

f(x)− f(x∗) =
1

2
(x− x∗)

T∇2f(z)(x− x∗)
T > 0,

where the inequality is true since ∇2f � 0 at every point and x 6= x∗. Thus,
f(x) > f(x∗) for every x 6= x∗, showing that x∗ is a strict global minimum point.

Additional problems:
P1. Define

A =

(
1 2
2 4

)
.

Using your favorite software, visualize a plot of the Rayleigh quotient f(x) =
RA(x) for x ∈ [−3, 3]2\{0}, and generate a contour plot for f . Use this
visualization to verify the maximum and minimum values of f , as well as the
set of x that are maximizers and minimizers.

The matrix A is symmetric and has orthogonal eigenvalue decomposition,

A = UΛUT , Λ =

(
0 0
0 5

)
, U =

1√
5

(
2 1
−1 2

)
.

We therefore analytically know the maximum and minimum of the Rayleigh quotient
f(x). In particular,

max
x∈Rn\{0}

f(x) = 5, minx ∈ Rn\{0}f(x) = 0,

and,

argmax
x∈Rn\{0}

f(x) =
{
k(1, 2)T

∣∣ k ∈ R, k 6= 0
}

argminx ∈ Rn\{0}f(x) =
{
k(2,−1)T

∣∣ k ∈ R, k 6= 0
}
.

Thus, we expect f to have a maximum value of 5 along the line with equation
2x1 − x2 = 0 (with x 6= 0), and f should have a minimum value of 0 along the
line with equation x1 + 2x2 = 0. These are visually verified with the plots shown in
Figure 1. Code reproducing this plot is available at
https://github.com/akilnarayan/2021Fall-Optimization-homework2.
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Figure 1: Visualization of the Rayleigh quotient (left) and its contour levels (right)
associated to Problem P1.
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