DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH Introduction to Optimization MATH 5770/6640, ME EN 6025 – Section 001 – Fall 2021 Homework 2 Solutions Optima and optimality conditions

Due September 21, 2021

Text: Introduction to Nonlinear Optimization, Amir Beck,

Exercises: # 2.1, 2.2, 2.4, 2.6, 2.11, 2.13(i, ii), 2.15(i, iii, iv, vii), 2.17(i,iii,vi,vii), 2.18

2.1. Find the global minimum and maximum points of the function $f(x, y) = x^2 + y^2 + 2x - 3y$ over the unit ball $S = B[\mathbf{0}, 1] = \{(x, y) : x^2 + y^2 \le 1\}$.

Let $\boldsymbol{a}^T = (2,3)^T$, and note that $2x - 3y = \langle \boldsymbol{a}, (x,y)^T \rangle$. Therefore, by the Cauchy-Schwarz inequality,

$$f(x,y) = x^{2} + y^{2} + 2x - 3y \stackrel{r^{2} = x^{2} + y^{2}}{\leq} r^{2} + \|\boldsymbol{a}\|_{2}r,$$

$$f(x,y) = x^{2} + y^{2} + 2x - 3y \stackrel{r^{2} = x^{2} + y^{2}}{\geq} r^{2} - \|\boldsymbol{a}\|_{2}r,$$
 (1)

where equality is achieved in each case if and only if (x, y) is parallel to **a**. Therefore, if we consider maximization, then we have,

$$f(x,y) \le g_+(r) \coloneqq r^2 + r\sqrt{13},$$

with equality achieved exactly when $(x, y)^T = r \frac{a}{\|a\|_2}$. Since the feasible set S is the unit ball, i.e., for all points satisfying $0 \le r \le 1$, we seek to maximize g_+ for $r \in [0, 1]$. Since g_+ is monotonic increasing on [0, 1], then its maximum is attained at r = 1, i.e., we have,

$$\max_{(x,y)\in B[\mathbf{0},1]} f(x,y) = \max_{r\in[0,1]} g_+(r) = g_+(1) = 1 + \sqrt{13},$$

and furthermore, $g_+(1) = f(x, y)$ when $(x, y)^T = \frac{a}{\|a\|_2}$, i.e.,

$$\underset{(x,y)\in B[\mathbf{0},1]}{\operatorname{argmax}} f(x,y) = \left(\frac{2}{\sqrt{13}}, -\frac{3}{\sqrt{13}}\right),$$

with maximum value $1 + \sqrt{13}$.

To compute the minimum value, we return to (1), and with similar logic conclude,

$$\min_{(x,y)\in B[\mathbf{0},1]} f(x,y) = \min_{r\in[0,1]} g_{-}(r), \qquad g_{-}(r) \coloneqq r^2 - r\sqrt{13}.$$

where this time we make the identification $(x, y)^T = -r \frac{a}{\|a\|_2}$ in order to achieve equality in (1) using the Cauchy-Schwarz inequality. In this case, g_- is monotonically decreasing function of r on [0, 1] since $g'_-(r) = 2r - \sqrt{13} < 0$. Therefore, the minimum occurs again at r = 1, i.e.,

$$\underset{(x,y)\in B[\mathbf{0},1]}{\operatorname{argmin}} f(x,y) = \left(-\frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}}\right),$$

with minimum value $1 - \sqrt{13}$.

2.2. Let $\boldsymbol{a} \in \mathbb{R}^n$ be a nonzero vetor. Show that the maximum of $\boldsymbol{a}^T x$ over $B[\boldsymbol{0}, 1] = \{\boldsymbol{x} \in \mathbb{R}^n : \|\boldsymbol{x}\| \leq 1\}$ is attained at $\boldsymbol{x}^* = \frac{\boldsymbol{a}}{\|\boldsymbol{a}\|}$ and that the maximal value if $\|\boldsymbol{a}\|$.

With $r = ||\mathbf{x}||$, the Cauchy-Schwarz inequality implies,

$$\max_{\boldsymbol{x}\in B[\boldsymbol{0},1]} \boldsymbol{a}^T \boldsymbol{x} \le \max_{\boldsymbol{x}\in B[\boldsymbol{0},1]} \|\boldsymbol{a}\| \|\boldsymbol{x}\| = \max_{\|\boldsymbol{x}\|\le 1} \|\boldsymbol{a}\| \|\boldsymbol{x}\| = \|\boldsymbol{a}\|,$$
(2)

where equality is achieved above if and only if $\boldsymbol{x} = r \frac{\boldsymbol{a}}{\|\boldsymbol{a}\|}$. Since we also know from above that the maximum is achieved when $\|\boldsymbol{x}\| = 1$, then we require a vector \boldsymbol{x} satisfying both,

$$\boldsymbol{x} = r \frac{\boldsymbol{a}}{\|\boldsymbol{a}\|}, \qquad \qquad \|\boldsymbol{x}\| = 1$$

implying that $\mathbf{x} = \mathbf{a}/\|\mathbf{a}\|$, achieving maximum value $\|\mathbf{a}\|$ as shown by (2).

2.4. Show that if A, B are $n \times n$ positive semidefinite matrices, then their sum A + B is also positive semidefinite.

Let $\boldsymbol{x} \in \mathbb{R}^n$ be arbitrary. Then,

$$\boldsymbol{x}^{T}\left(\boldsymbol{A}+\boldsymbol{B}\right)\boldsymbol{x}=\boldsymbol{x}^{T}\boldsymbol{A}\boldsymbol{x}+\boldsymbol{x}^{T}\boldsymbol{B}\boldsymbol{x}\overset{\boldsymbol{A},\boldsymbol{B}\succeq\boldsymbol{0}}{\geq}0,$$

showing that $A + B \succeq 0$.

2.6. Let $B \in \mathbb{R}^{n \times k}$ and let $A = BB^T$.

- (i) Prove \boldsymbol{A} is positive semidefinite.
- (ii) Prove that A is positive definite if and only if B as full row rank.

Let $\boldsymbol{x} \in \mathbb{R}^n$ be arbitrary. Defining $\boldsymbol{y} \coloneqq \boldsymbol{B}^T \boldsymbol{x}$, then

$$\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{B} \boldsymbol{B}^T \boldsymbol{x} = \boldsymbol{y}^T \boldsymbol{y} = \|\boldsymbol{y}\|_2^2 \ge 0,$$

since $\|\cdot\|_2$ is a norm. This proves (i), that $A \succeq 0$. To prove (ii), assume $x \neq 0$, and note that $x^T A x = \|y\|_2^2$ can equal zero if and only if y = 0. Note that in order for this to happen, x must be a nonzero vector satisfying,

$$\boldsymbol{y} = \boldsymbol{B}^T \boldsymbol{x} = \boldsymbol{0},$$

implying in turn that \boldsymbol{x} must be a non-trivial vector in the kernel of \boldsymbol{B}^T in order for $\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}$ to vanish. The Fundamental Theorem of Linear Algebra guarantees that the kernel of \boldsymbol{B}^T is empty (i.e., has dimension equal to 0) if and only if \boldsymbol{B}^T has linearly independent columns, i.e., if and only if \boldsymbol{B} as linearly independent rows, i.e., if and only if \boldsymbol{B} has full row rank. Thus, $\boldsymbol{A} \succ \boldsymbol{0}$ if and only if \boldsymbol{B} has full row rank.

2.11. Let $d = \Delta_n$ (Δ_n being the unit-simplex). Show that the $n \times n$ matrix A defined by

$$A_{i,j} = \begin{cases} d_i - d_i^2, & i = j, \\ -d_i d_j, & i \neq j, \end{cases}$$

is positive semidefinite.

Note that \boldsymbol{A} is a symmetric matrix: $A_{i,j} = A_{j,i}$. If $\boldsymbol{d} \in \Delta_n$, then its entries d_i all satisfy $0 \leq d_i \leq 1$ for $i = 1, \ldots, n$, and also $d_i = 1 - \sum_{j \neq i} d_j$. This implies first that

$$d_i \ge d_i^2 \quad \Longrightarrow \quad A_{i,i} \ge 0,$$

and second that

$$\sum_{j \neq i} |A_{i,j}| = d_i \left(\sum_{j \neq i} d_j \right) = d_i \left(1 - d_i \right) = d_i - d_i^2 = |A_{i,i}|.$$

Thus, A is a symmetric matrix with non-negative entries on the diagonal that is diagonally dominant. By Theorem 2.25, $A \succeq 0$.

2.13. For each of the following matrices determine whether they are positive/negative semidefinite/definite or indefinite.

(i)
$$\boldsymbol{A} = \begin{pmatrix} 2 & 2 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

The matrix A is positive semidefinite. To see why, first define the 2×2 matrices

$$\boldsymbol{A}_1 = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}, \boldsymbol{A}_2 \qquad \qquad = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$

Note that A_1 is positive semidefinite (its eigenvalues are 0, 4), and A_2 is positive definite (its eigenvalues are 2, 4). Therefore, given any $\boldsymbol{x} = (x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4$, we have,

$$\boldsymbol{x}^{T}\boldsymbol{A}\boldsymbol{x} = (x_{1}, x_{2})\boldsymbol{A}_{1}(x_{1}, x_{2})^{T} + (x_{3}, x_{4})\boldsymbol{A}_{2}(x_{3}, x_{4})^{T} \ge 0,$$

since $A_1 \succeq \mathbf{0}$ and $A_2 \succ \mathbf{0}$. The matrix A cannot be cannot be positive definite since choosing $\mathbf{x} = (1, -1, 0, 0)^T \in \mathbb{R}^4$ results in $\mathbf{x}^T A \mathbf{x} = 0$. Therefore, $A \succeq \mathbf{0}$.

(ii) $\boldsymbol{B} = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 3 & 3 \\ 2 & 3 & 3 \end{pmatrix}$ By direct computation, i.e., computing the roots of det $(\boldsymbol{B} - \lambda \boldsymbol{I}) = -\lambda(\lambda^2 - 8\lambda + 4)$, the eigenvalues of \boldsymbol{B} are $0, 4 \pm 2\sqrt{3}$. Therefore, \boldsymbol{B} is also positive semidefinite.

2.15. For each of the following functions, determine whether it is coercive or not: (i) $f(x_1, x_2) = x_1^4 + x_2^4$.

This function is coercive: as $||\mathbf{x}|| \to \infty$, we must have either $|x_1| \to \infty$ and/or $|x_2| \to \infty$. Thus, for large $||\mathbf{x}||$, we have either $|x_1|^4 = x_1^4 \to \infty$ and/or $|x_2|^4 = x_2^4 \to \infty$. Since both x_1^4 and x_2^4 are non-negative, then

$$\lim_{\|\boldsymbol{x}\| \to \infty} f(\boldsymbol{x}) \ge \lim_{\|\boldsymbol{x}\| \to \infty} \min\{x_1^4, x_2^4\} = \infty.$$

(iii) $f(x_1, x_2) = 2x_1^2 - 8x_1x_2 + x_2^2$.

This function is not coercive: along the line $x_1 = x_2$ we have $f(x_1, x_2) =$ $-5x_1^2$. Then sending $\|\boldsymbol{x}\| \to \infty$ by taking $\boldsymbol{x} = (k,k)^T$ as $k \uparrow \infty$ shows that $f(\boldsymbol{x}) \to -\infty$

(iv) $f(x_1, x_2) = 4x_1^2 + 2x_1x_2 + 2x_2^2$. This function is coercive:

$$f(x_1, x_2) = (x_1 + x_2)^2 + 3x_1^2 + x_2^2 \ge x_1^2 + x_2^2 = \|\boldsymbol{x}\|^2,$$

so that $f \uparrow \infty$ as $\|\boldsymbol{x}\| \uparrow \infty$. (vii) $f(x_1, x_2) = \frac{\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}}{\|\boldsymbol{x}\| + 1}$, where $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is positive definite.

This function is coercive: Since $\mathbf{A} \succ \mathbf{0}$, then it smallest eigenvalue $\lambda_{\min}(\mathbf{A})$ satisfies $\lambda_{\min}(\mathbf{A}) > 0$. Since the extremal eigenvalues of \mathbf{A} bound the possible values of the Rayleigh quotient, we therefore have,

$$\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} \geq \|\boldsymbol{x}\|^2 \lambda_{\min}(\boldsymbol{A}).$$

Therefore,

$$f(\boldsymbol{x}) = rac{\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}}{\|\boldsymbol{x}\| + 1} \ge \lambda_{\min}(\boldsymbol{A}) rac{\|\boldsymbol{x}\|^2}{\|\boldsymbol{x}\| + 1},$$

Since $\lambda_{\min}(\mathbf{A}) > 0$, we therefore have that $f \uparrow \infty$ as $\|\mathbf{x}\| \uparrow \infty$.

2.17. For each of the following functions, find all the stationary points and classify them according to whether they are saddle points, strict/nonstrict local/global minimum/maximum points:

(i) $f(x_1, x_2) = (4x_1^2 - x_2)^2$. We have.

$$\nabla f(x_1, x_2) = 2(4x_1^2 - x_2) \begin{pmatrix} 8x_1 \\ -1 \end{pmatrix},$$

so that there are infinitely many stationary points lying along the curve defined by $x_2 = 4x_1^2$ (which is a parabola). Note that $f(x_1, x_2) \ge 0$ for any (x_1, x_2) , and $f(x_1, x_2) = 0$ if and only if (x_1, x_2) is a stationary point satisfying $x_2 = 4x_1^2$. Therefore, the stationary points are all points of the form $(k, 4k^2)$ for any $k \in \mathbb{R}$, and they are all nonstrict global and local minima.

(iii) $f(x_1, x_2) = 2x_2^3 - 6x_2^2 + 3x_1^2x_2$. We have,

$$\nabla f(x_1, x_2) = 3 \left(\begin{array}{c} 2x_1 x_2 \\ 2x_2^2 - 4x_2 + x_1^2 \end{array} \right).$$

The first component of the gradient vanishes if and only if $x_1 = 0$ and/or $x_2 = 0$. If $x_1 = 0$, then the second component vanishes when $x_2 = 0, 2$. Therefore, two stationary points are (0,0) and (0,2). If instead we force $x_2 = 0$, then the second component requires $x_1 = 0$, which is a point we have already recorded. The Hessian is given by

$$\nabla^2 f(x_1, x_2) = 6 \left(\begin{array}{cc} x_2 & x_1 \\ x_1 & 2(x_2 - 1) \end{array} \right).$$

At the stationary point (0, 2),

$$\nabla^2 f(0,2) = 12\boldsymbol{I} \succ \boldsymbol{0},$$

so that (0,2) is a strict local minimum. It cannot be a global minimum since $\lim_{x_2\to-\infty} f(0,x_2) = -\infty$. At the stationary point (0,0),

$$\nabla^2 f(0,0) = \left(\begin{array}{cc} 0 & 0\\ 0 & -12 \end{array}\right) \preceq \mathbf{0},$$

which is inconclusive. However, one can see that (0,0) is a saddle point: along $x_1 = 0$, then $f(0, x_2) = 2x_2^3 - 6x_2^2$, which is negative for small x_2 . But along $x_1 = \sqrt{2x_2}$, we have $f(\sqrt{2x_2}, x_2) = 2x_2^3$, which is positive for small $x_2 > 0$. Therefore, the two stationary points are (0,0) which is a strict local minimum, and (0,0), which is a saddle point.

(vi) $f(x_1, x_2) = 2x_1^2 + 3x_2^2 - 2x_1x_2 + 2x_1 - 3x_2$.

The function f is a quadratic function whose Hessian is

$$\nabla^2 f = \left(\begin{array}{cc} 4 & -2\\ -2 & 6 \end{array}\right),$$

which is positive definite. Therefore, there is exactly 1 stationary point and it is a global minimum. The gradient is given by,

$$\nabla f(x_1, x_2) = \begin{pmatrix} 4x_1 - 2x_2 + 2\\ -2x_1 + 6x_2 - 3 \end{pmatrix},$$

and therefore the stationary point is $(x_1, x_2) = \left(-\frac{3}{10}, \frac{2}{5}\right)$, and it is a strict global minimum.

(vii) $f(x_1, x_2) = x_1^2 + 4x_1x_2 + x_2^2 + x_1 - x_2.$

This is again a quadratic function; the Hessian is

$$\nabla f^2 = \left(\begin{array}{cc} 2 & 4\\ 4 & 2 \end{array}\right),$$

whose eigenvalues are -2, 6, so the Hessian is indefinite. Therefore, stationary points are saddle points. The gradient is

$$\nabla f(x_1, x_2) = \begin{pmatrix} 2x_1 + 4x_2 + 1\\ 4x_1 + 2x_2 - 1 \end{pmatrix},$$

so the stationary point is $(x_1, x_2) = (\frac{1}{2}, -\frac{1}{2})$, and it is a saddle point.

2.18. Let f be a twice continuously differentiable function over \mathbb{R}^n . Suppose that $\nabla^2 f(\boldsymbol{x}) \succ \boldsymbol{0}$ for any $\boldsymbol{x} \in \mathbb{R}^n$. Prove that a stationary point of f is necessarily a strict global minimum point.

Suppose \boldsymbol{x}_* is a stationary point, i.e., $\nabla f(\boldsymbol{x}_*) = \boldsymbol{0}$. By Taylor's theorem, we can represent $f(\boldsymbol{x})$ for any $\boldsymbol{x} \in \mathbb{R}^n$ not equal to \boldsymbol{x}_* by expanding around the stationary point \boldsymbol{x}_* :

$$f(\boldsymbol{x}) = f(\boldsymbol{x}_{*}) + \nabla f(\boldsymbol{x}_{*})(\boldsymbol{x} - \boldsymbol{x}_{*}) + \frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}_{*})^{T} \nabla^{2} f(\boldsymbol{z})(\boldsymbol{x} - \boldsymbol{x}_{*})^{T},$$

for some $\boldsymbol{z} \in [\boldsymbol{x}_*, \boldsymbol{x}]$. The above relation simplifies to

$$f(x) - f(x_*) = \frac{1}{2} (x - x_*)^T \nabla^2 f(z) (x - x_*)^T > 0,$$

where the inequality is true since $\nabla^2 f \succ \mathbf{0}$ at every point and $\mathbf{x} \neq \mathbf{x}_*$. Thus, $f(\mathbf{x}) > f(\mathbf{x}_*)$ for every $\mathbf{x} \neq \mathbf{x}_*$, showing that \mathbf{x}_* is a strict global minimum point.

Additional problems:

P1. Define

$$oldsymbol{A} = \left(egin{array}{cc} 1 & 2 \ 2 & 4 \end{array}
ight).$$

Using your favorite software, visualize a plot of the Rayleigh quotient $f(\mathbf{x}) = R_{\mathbf{A}}(\mathbf{x})$ for $\mathbf{x} \in [-3,3]^2 \setminus \{\mathbf{0}\}$, and generate a contour plot for f. Use this visualization to verify the maximum and minimum values of f, as well as the set of \mathbf{x} that are maximizers and minimizers.

The matrix A is symmetric and has orthogonal eigenvalue decomposition,

$$\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{T}, \qquad \boldsymbol{\Lambda} = \begin{pmatrix} 0 & 0 \\ 0 & 5 \end{pmatrix}, \qquad \boldsymbol{U} = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$$

We therefore analytically know the maximum and minimum of the Rayleigh quotient $f(\boldsymbol{x})$. In particular,

$$\max_{\boldsymbol{x}\in\mathbb{R}^n\setminus\{\boldsymbol{0}\}}f(\boldsymbol{x})=5,\qquad\qquad\min\boldsymbol{x}\in\mathbb{R}^n\setminus\{\boldsymbol{0}\}f(\boldsymbol{x})=0,$$

and,

$$\underset{\boldsymbol{x} \in \mathbb{R}^n \setminus \{\boldsymbol{0}\}}{\operatorname{argmin} \boldsymbol{x} \in \mathbb{R}^n \setminus \{\boldsymbol{0}\}} f(\boldsymbol{x}) = \left\{ k(1,2)^T \mid k \in \mathbb{R}, \ k \neq 0 \right\}$$
$$\operatorname{argmin} \boldsymbol{x} \in \mathbb{R}^n \setminus \{\boldsymbol{0}\} f(\boldsymbol{x}) = \left\{ k(2,-1)^T \mid k \in \mathbb{R}, \ k \neq 0 \right\}.$$

Thus, we expect f to have a maximum value of 5 along the line with equation $2x_1 - x_2 = 0$ (with $x \neq 0$), and f should have a minimum value of 0 along the line with equation $x_1 + 2x_2 = 0$. These are visually verified with the plots shown in Figure 1. Code reproducing this plot is available at

https://github.com/akilnarayan/2021Fall-Optimization-homework2.

Figure 1: Visualization of the Rayleigh quotient (left) and its contour levels (right) associated to Problem P1.