Rational approximation

MATH 6610 Lecture 28

November 20, 2020

Types of approximation

We considered two types of approximation:

- Fourier Series approximation (periodic functions)
- Polynomial approximation (mostly interpolation)

Both of these methods have certain (dis)advantages.

Types of approximation

We considered two types of approximation:

- Fourier Series approximation (periodic functions)
- Polynomial approximation (mostly interpolation)

Both of these methods have certain (dis)advantages.

The last type of approximation we'll consider is rational approximation.

General setup: univariate scalar-valued functions, but can be complex valued.

$$f: \mathbb{C} \to \mathbb{C}$$

Rational functions

A function $\mathcal{K}: \mathbb{C} \to \mathbb{C}$ is a rational function if it is a ratio of polynomials:

$$r(z) \coloneqq \frac{p(z)}{q(z)},$$

where P_n is the space of polynomials of degree n and less. Span $\{1,2,-2^n\}$

 $p, q \in P_n$

Terminology: r is a rational function of "type $(\deg p, \deg q)$ ".

We'll assume throughout that p and q have no common (non-constant) divisors.

The function r is a ("strictly") proper rational function if $\deg p < \deg q$.

Note that p and q are not unique without specifying a normalization.

$$r(z) = \frac{z^2}{z^2} = \frac{1}{1}$$
if $\deg p \ge \deg q = \sum r(z) = w(z) + \frac{u(z)}{v(z)}$

$$\frac{1}{v(z)} = \frac{z^2}{z^2} = \frac{1}{1}$$

$$\frac{1}{v(z)} = \frac{1}{v(z)} = \frac{1}{v(z)} = \frac{1}{v(z)}$$

$$\frac{1}{v(z)} = \frac{1}{v(z)} = \frac{1}{v(z)} = \frac{1}{v(z)}$$

$$\frac{1}{v(z)} = \frac{1}{v(z)} = \frac{1}{$$

$$r(2) = \frac{p(2)}{g(2)} = \frac{3 - p(2)}{3 - g(2)}$$

For normalization, we'll assume g(2) = 1 + (higher order terms)

Rational functions

A function $R: \mathbb{C} \to \mathbb{C}$ is a rational function if it is a ratio of polynomials:

$$r(z) := \frac{p(z)}{q(z)}, \qquad p, q \in P_n,$$

where P_n is the space of polynomials of degree n and less.

Terminology: r is a rational function of "type $(\deg p, \deg q)$ ".

We'll assume throughout that p and q have no common (non-constant) divisors.

The function r is a ("strictly") proper rational function if $\deg p < \deg q$.

Note that p and q are not unique without specifying a normalization.

Goal: given f, construct r such that $f \approx r$.

Why is this better (worse?) than polynomial approximation or Fourier Series?

Some functions are very efficiently represented by rational functions.

Padè approximation (very well-known)

One strategy for constructing rational functions is Padè approximation.

The main idea: choose r = p/q such that

$$f(z) = \frac{p(z)}{q(z)} + \mathcal{O}(x^{n+m+1}), \qquad \deg p = m, \qquad \deg q = n.$$

I.e., match Taylor coefficients to as high an order as possible. (the theorem men)

p has mil degrees of freedom

g has n degrees of freedom
$$(q(z)=1+--)$$

Padè approximation

One strategy for constructing rational functions is Padè approximation.

The main idea: choose r = p/q such that

$$f(z) = \frac{p(z)}{q(z)} + \mathcal{O}(x^{n+m+1}), \qquad \deg p = m, \qquad \deg q = n.$$

I.e., match Taylor coefficients to as high an order as possible.

Specifically, suppose p and q have the form,

$$r(z) = \frac{p(z)}{q(z)} = \frac{\sum_{j=0}^{m} a_j x^j}{1 + \sum_{j=1}^{n} b_j x^j},$$

for some coefficients a_0, \ldots, a_m and b_1, \ldots, b_n . (and let's define $b_0 = 1$)

How are Pade approximante formed? Taylor Series

$$f(z) = \frac{p(z)}{g(z)}$$
 up to order men.

$$f(z)$$
 up for order men is $\int_{z=0}^{m+n} c_j x^j$ for some (known)

$$\sum_{j=0}^{m+1} c_j \chi^j = \sum_{j=0}^{m} a_j \chi^j$$

$$\sum_{j=0}^{m} b_j \chi^j = \sum_{j=0}^{m} b_j \chi^j$$

$$\sum_{j=0}^{m} b_j \chi^j = \sum_{j=0}^{m} a_j \chi^j$$

$$\sum_{j=0}^{m} b_j \chi^j = \sum_{j=0}^{m} a_j \chi^j$$

$$\left(\sum_{j=0}^{m+n} C_j \chi^j\right) \left(\sum_{j=0}^{n} b_j \chi^j\right) = \sum_{j=0}^{m} q_j \chi^j$$

$$\chi'$$
: $b_0 c_1 + b_1 c_0 = a_1$

$$\chi^{0}$$
: $b_{0}c_{0} = a_{0}$
 χ^{1} : $b_{0}c_{1} + b_{1}c_{0} = a_{1}$
 χ^{2} : $b_{0}c_{2} + b_{1}c_{1} + b_{2}c_{0} = a_{2}$
 \vdots

$$\chi j : \sum_{K=n}^{j} b_{K} c_{j-K} = q_{j} \quad \left(0 \le j \le m \right)$$

continue for higher orders: RHS = 0.

$$\chi^{j}$$
, $j \ge m$: $\sum_{k=0}^{j} b_k C_{j-k} = 0$

There are n unknown crefficients $\{b_k\}_{k=1}^n$, So take n conditing:

Set of n linear equations for n unknowns.

Second Step: Solve $\sum_{k=0}^{\infty} b_k C_{j-k} = q_j$ for j=0,-mfor the coefficients $\{q_i\}_{i=0}^{\infty}$

Padè approximation

One strategy for constructing rational functions is Padè approximation.

The main idea: choose r = p/q such that

$$f(z) = \frac{p(z)}{q(z)} + \mathcal{O}(x^{n+m+1}), \qquad \deg p = m, \qquad \deg q = n.$$

I.e., match Taylor coefficients to as high an order as possible.

Specifically, suppose p and q have the form,

$$r(z) = \frac{p(z)}{q(z)} = \frac{\sum_{j=0}^{m} a_j x^j}{1 + \sum_{j=1}^{n} b_j x^j},$$

for some coefficients a_0, \ldots, a_m and b_1, \ldots, b_n . The computation can be accomplished in a two-step procedure:

- Compute $\{b_j\}_{j=1}^n$ with a linear system matching orders $m+1,\ldots,m+n$.
- Compute $\{a_j\}_{j=0}^m$ with a linear system matching orders $0,\ldots,m$.

Rational approximation practicalities

$$f(z) = \frac{p(z)}{q(z)} + \mathcal{O}(x^{n+m+1}),$$
 $\deg p = m,$ $\deg q = n.$

In order to match coefficients, we need the Taylor expansion of f.

Rational approximation practicalities

$$f(z) = \frac{p(z)}{q(z)} + \mathcal{O}(x^{n+m+1}), \qquad \deg p = m, \qquad \deg q = n.$$

In order to match coefficients, we need the Taylor expansion of f.

This is not so practical, but it does reveal a very useful strategy: linearization.

Consider, e.g., interpolation: (alternative to lade)

$$r(z_j) = \frac{p(z_j)}{q(z_j)} = f(z_j),$$
 $j = 1, \dots, m + n + 1.$

The difficulty in imposing these conditions: they depend <u>non</u>linearly on coefficients.

$$f(z) = \frac{p(z)}{q(z)} + \mathcal{O}(x^{n+m+1}), \qquad \deg p = m, \qquad \deg q = n.$$

In order to match coefficients, we need the Taylor expansion of f.

This is not so practical, but it does reveal a very useful strategy: linearization.

Consider, e.g., interpolation:

$$r(z_j) = \frac{p(z_j)}{q(z_j)} = f(z_j),$$
 $j = 1, \dots, m + n + 1.$

The difficulty in imposing these conditions: they depend <u>non</u>linearly on coefficients.

Linearization: impose these conditions in a different way:

$$q(z_j)f(z_j) = p(z_j),$$
 $j = 1, ..., m + n + 1.$

This results in a linear system for the a_i , b_i coefficients.

Linearizations

$$f(z) = \frac{p(z)}{q(z)} \longrightarrow q(z)f(z) = p(z).$$

For interpolation and Padè approximation, linearization does not change formulation.

For other conditions, e.g., least-squares, linearization is different.

However, linearization provides a concrete solution strategy.

Linearizations

$$f(z) = \frac{p(z)}{q(z)} \longrightarrow q(z)f(z) = p(z).$$

For interpolation and Padè approximation, linearization does not change formulation.

For other conditions, e.g., least-squares, linearization is different.

However, linearization provides a concrete solution strategy.

There is one problem that linearization doesn't solve: how to ensure a good approximation?

One answer: there is an algorithm that empirically gives good approximation results: AAA.

Barycentric form

Consider an alternative "barycentric" formulation for a rational function:

$$r(z) = \frac{\sum_{j=1}^{m} \frac{w_{j} f_{j}}{z - z_{j}}}{\sum_{j=1}^{m} \frac{w_{j}}{z - z_{j}}}. \qquad \frac{N(z)}{d(z)}, \text{ in definition}$$
 By eliminating denominators: this is a type $(m-1, m-1)$ rational function.

(It's actually also a polynomial if w_i are chosen correctly....)

Barycentric form

Consider an alternative "barycentric" formulation for a rational function:

$$r(z) = \frac{\sum_{j=1}^{m} \frac{w_j f_j}{z - z_j}}{\sum_{j=1}^{m} \frac{w_j}{z - z_j}}.$$

By eliminating denominators: this is a type (m-1, m-1) rational function. (It's actually also a polynomial if w_i are chosen correctly....)

The coefficients f_i and w_i are freely chosen complex numbers.

There are some important properties of this approximation:

- If $w_i \neq 0$, then r does <u>not</u> have a pole at $z = z_j$.
- If $w_i \neq 0$, then $r(z_i) = f_i$.
- The above are true independent of how $w_i \neq 0$ are chosen.

for
$$z \approx z_3$$
: $r(z) \approx \frac{w_3 + 1}{z - z_3} = f_3$

AAA Algarithm baciz idea "Adaptive Antoulas-Anderson" algorithm. Given nodes & function values • : given data (Z; F;)
j=1...M O : interpolation points (determines Zi, fi in Bary Centric farm) · : linearized least-squares on these Lata points to

determine Wi.

The AAA algorithm

$$r(z) = \frac{\sum_{j=1}^{m} \frac{w_j f_j}{z - z_j}}{\sum_{j=1}^{m} \frac{w_j}{z - z_j}}.$$

Given data,

$$(Z_1,\ldots,Z_M), (F_1,\ldots,F_M),$$

with $f(Z_i) = F_i$, and $M \gg m$.

The AAA algorithm

$$r(z) = \frac{\sum_{j=1}^{m} \frac{w_j f_j}{z - z_j}}{\sum_{j=1}^{m} \frac{w_j}{z - z_j}}.$$

Given data,

$$(Z_1, \ldots, Z_M), (F_1, \ldots, F_M),$$

with $f(Z_i) = F_i$, and $M \gg m$.

AAA core ideas:

- "Intelligently" choose interpolation locations $\{z_1,\ldots,z_m\}\subset\{Z_1,\ldots,Z_M\}$ (Hence choose z_j , f_j appropriately)
- The $\{w_j\}_{j=1}^m$ can be chosen arbitrarily: choose them to minimize a least-squares residual.

The algorithm proceeds in an alternating fashion. Let m=0.

- 1. Choose z_{m+1} (and hence f_{m+1})
- 2. Compute weights $\{w_j\}_{j=1}^{m+1}$ using least-squares.
- 3. $m \leftarrow m + 1$ and repeat steps.

AAA algorithm interpolation

How is
$$z_{m+1}$$
 chosen? (Interpolation points)

• If m=0, choose

$$j^* = \underset{j}{\operatorname{arg\,max}} |F_j|, \qquad z_1 = Z_{j^*}.$$

• If $m > \chi$, choose

$$j^* = \arg\max_{j} |F_j - r(Z_j)|, \qquad z_{m+1} = Z_{j*}.$$

The approximation r above is the m-point barycentric rational approximation from the previous step.

AAA algorithm least squares

$$r(z) = \frac{n(z)}{d(z)} = \frac{\sum_{j=1}^{m} \frac{w_j f_j}{z - z_j}}{\sum_{j=1}^{m} \frac{w_j}{z - z_j}}.$$

How are the weights $\{w_j\}_{j=1}^m$ chosen?

First note that there is ambiguity in the normalization of the weights, so enforce

$$||w||_2 = 1,$$
 $w = (w_1, \dots, w_m)^T.$

AAA algorithm least squares

L28-S09

linean Zation

$$r(z) = \frac{n(z)}{d(z)} = \frac{\sum_{j=1}^{m} \frac{w_j f_j}{z - z_j}}{\sum_{j=1}^{m} \frac{w_j}{z - z_j}} \approx \mathcal{L}(z) \implies \mathcal{L}(z)$$

$$\approx h(z)$$

How are the weights $\{w_j\}_{j=1}^m$ chosen?

First note that there is ambiguity in the normalization of the weights, so enforce

$$||w||_2 = 1,$$
 $w = (w_1, \dots, w_m)^T.$

The weights are now chosen in the *linearized* least squares sense:

$$w^* = \operatorname*{arg\,min}_{w \in \mathbb{C}^m} \sum_{j \in S_m} |d(Z_j)F_j - n(Z_j)|^2,$$

where the index set S_m corresponds to the indices j such that Z_j is <u>not</u> an interpolation node:

$$S_m := \{ j \in \{1, \dots, M\} \mid Z_j \notin \{z_1, \dots, z_m\} \}.$$

$$\begin{split} & \left| d(Z_j) F_j - u(Z_j) \right|^2 \\ &= \left| \sum_{k=1}^{m} \frac{F_j w_k}{Z_{-2u}} - \sum_{k=1}^{m} \frac{f_k w_{ik}}{Z_{-2u}} \right|^2 \\ &= \left| \sum_{k=1}^{m} \left(\frac{F_j - f_k}{Z_{-2u}} \right) w_k \right|^2 \\ &= \left| \sum_{k=1}^{m} \left(\frac{F_j - f_k}{Z_{-2u}} \right) w_k \right|^2 \\ &= \left| \sum_{k=1}^{m} \left(\frac{F_j - f_k}{Z_{-2u}} \right) w_k \right|^2 \\ &= \sum_{k=1}^{m} \left(\frac{F_j - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right) w_k \\ &= \sum_{k=1}^{m} \left(\frac{F_k - f_k}{Z_{-2u}} \right)$$

Least-s que residual: $\frac{M-m}{\sum_{j=1}^{N-m} |d(Z_{s_{j}})F_{s_{j}} - n(Z_{s_{j}})|^{2}}$ $= \frac{M-m}{\sum_{j=1}^{N-m} |(L_{m}w)_{j}|^{2}} = ||L_{m}w||_{2}^{2}$ are least-Squeres points. col index: interpolation points

The Loewner matrix

The AAA least-squares minimization problem is equivalent to,

Compute $w \in \mathbb{C}^m$ such that $||w||_2 = 1$ and $||L_m w||_2$ is minimized

where L_m is the Loewner matrix. With

$$S_m = \{s_1, \dots, s_{M-m}\},\,$$

then

$$L_m \in \mathbb{C}^{(M-m)\times m}, \qquad (L_m)_{k,j} = \frac{F_{s_k} - f_j}{Z_{s_k} - z_j},$$

for $k = 1, \ldots, M - m$, and $j = 1, \ldots, m$.

The Loewner matrix

The AAA least-squares minimization problem is equivalent to,

Compute $w \in \mathbb{C}^m$ such that $||w||_2 = 1$ and $||L_m w||_2$ is minimized

where L_m is the Loewner matrix. With

$$S_m = \{s_1, \dots, s_{M-m}\}, \quad \text{min} \left(L_{\mathsf{m}} \right)$$

then

$$L_m \in \mathbb{C}^{(M-m)\times m}, \qquad (L_m)_{k,j} = \frac{F_{s_k} - f_j}{Z_{s_k} - z_j},$$

for $k=1,\ldots,M-m$, and $j=1,\ldots,m$. [i.e., w is a (unit-norm) minimal right-singular vector of L_m .

The AAA algorithm (Nonlineer approximation)

In summary, here are steps for the AAA algorithm:

Set m=0, set r(z)=0.

Initialize the Loewner matrix L_0 as an $M \times 0$ matrix.

Compute z_{m+1} as

$$j^* = \arg\max_{j} |F_j - r(Z_j)|, \qquad z_{m+1} = Z_{j^*}$$

and set $f_{m+1} = F_{j*}$.

- 2. Construct L_{m+1} by adding a column and removing a row. (Columns correspond to interpolation points, rows to the rest of the points.)
- 3. Compute $w \in \mathbb{C}^{m+1}$ as the minimal right-singular vector of L_{m+1} .
- 4. Construct r for m+1 using the new weights w and new point (z_{m+1},f_{m+1}) .
- 5. Terminate if $\max_j |F_j r(Z_j)|$ is "small enough". $(l)^{-l}$
- 6. Otherwise, $m \leftarrow m + 1$ and repeat.