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Types of approximation

We considered two types of approximation:
@ Fourier Series approximation (periodic functions)
@ Polynomial approximation (mostly interpolation)

Both of these methods have certain (dis)advantages.
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Types of approximation . 28-S01

We considered two types of approximation:
@ Fourier Series approximation (periodic functions)
@ Polynomial approximation (mostly interpolation)

Both of these methods have certain (dis)advantages.
The last type of approximation we'll consider is rational approximation.

General setup: univariate scalar-valued functions, but can be complex valued.
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Rational functions L28-502

A function/R/: C — C is a rational function if it is a ratio of polynomials:
a

r(z) = P2 p.q € P,

q(z)’ [
tpan § 12, wz"}

where P, is the space of polynomials of degree n and less. SPM

Terminology: 7 is a rational function of “type (degp,degq)".

We'll assume throughout that p and ¢ have no common (non-constant) divisors.
The function r is a (“strictly”) proper rational function if degp < degq.

Note that p and ¢ are not unique without specifying a normalization.
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Rational functions L28-502

A function R : C — C is a rational function if it is a ratio of polynomials:

r(z) = p(z)

, D,q € Pn,
q(2)

where P, is the space of polynomials of degree n and less.
Terminology: 7 is a rational function of “type (degp,degq)".

We'll assume throughout that p and ¢ have no common (non-constant) divisors.
The function r is a (“strictly”) proper rational function if degp < degq.

Note that p and ¢ are not unique without specifying a normalization.

Goal: given f, construct r such that f ~ r.

Why is this better (worse?) than polynomial approximation or Fourier Series?
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Padé approximation (\/513 wt[/,(éww) L28-5S03

One strategy for constructing rational functions is Padé approximation.

The main idea: choose r = p/q such that

£e) = 2+ 0@,

degp = m, degq = n.

l.e., match Taylor coefficients to as high an order as possible. [UP b &/\(L/U min )
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Padé approximation L28-503

One strategy for constructing rational functions is Padé approximation.

The main idea: choose r = p/q such that

f(z) = 22 o(gnemeny, degp = m, degq = n.

q(2)

|.e., match Taylor coefficients to as high an order as possible.
Specifically, suppose p and ¢ have the form,

p(z) Yo ajx’
q(2) 1 +Z;'L=1 bjxI’

for some coefficients ag,...,am and by,...,by. (ﬂnA (CILSI' MV\Z éﬁ = ( )

r(z) =
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Padé approximation L28-503

One strategy for constructing rational functions is Padé approximation.

The main idea: choose r = p/q such that

f(z) = B2 4 o(gremeny, degp = m, degq = n.

l.e., match Taylor coefficients to as high an order as possible.

Specifically, suppose p and ¢ have the form,

o) = B _Zumo @
q(2) 1+ Zj:l bjx
for some coefficients ag,...,am and by,...,b,. The computation can be
accomplished in a two-step procedure:
e Compute {b;}7_; with a linear system matching orders m +1,...,m + n.
e Compute {a;}7Ly with a linear system matching orders 0, ..., m.
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Rational approximation practicalities L28-504

f(2) = 52; £ O™y, degp = m, degq = .

In order to match coefficients, we need the Taylor expansion of f.
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Rational approximation practicalities L28-504

f(2) = 52; £ O™y, degp = m, degq = .

In order to match coefficients, we need the Taylor expansion of f.

This is not so practical, but it does reveal a very useful strategy: linearization.

Consider, e.g., interpolation:(q{w.!/[\/p— L Pﬂ A@ )

T(Zj):]qjgzj:g:f(Zj), j=1,...,m+n—+1

The difficulty in imposing these conditions: they depend nonlinearly on coefficients.
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Rational approximation practicalities L28-504

f(z) = &) | o(gmimt, degp — m, degq — .

In order to match coefficients, we need the Taylor expansion of f.
This is not so practical, but it does reveal a very useful strategy: linearization.

Consider, e.g., interpolation:

T(Zj):]qjgjjizf(zj'), j=1,...,m+n—+1

The difficulty in imposing these conditions: they depend nonlinearly on coefficients.

Linearization: impose these conditions in a different way:

q(2) f(z5) = p(25), 7=1,....m+n+1.

This results in a linear system for the a;, b; coefficients.
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Linearizations L28-S05

For interpolation and Padé approximation, linearization does not change
formulation.

For other conditions, e.g., least-squares, linearization is different.

However, linearization provides a concrete solution strategy.
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Linearizations L28-S05

For interpolation and Padé approximation, linearization does not change
formulation.

For other conditions, e.g., least-squares, linearization is different.

However, linearization provides a concrete solution strategy.

There is one problem that linearization doesn’t solve: how to ensure a good
approximation?

OM/ anlwee: Hluse ¢ an d(é@fﬂ(hw\ W
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Barycentric form L28-5S06

Consider an alternative “barycentric” formulation for a rational function:

m o wils >

{ W e 7“(2):—2‘1;1 L. = V\( ) n, CLW0+
> dfb . ] d(?/> po Wlmi):/

By ellmlrz“m geag‘omlna,tors this is a type (m — 1, m — 1) rational function.

(It's actually also a polynomial if w; are chosen correctly....)
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Barycentric form L28-5S06

Consider an alternative “barycentric” formulation for a rational function:
s wj fj

Jj=1 z—2;

J=1 z—z2;

By eliminating denominators: this is a type (m — 1,m — 1) rational function.
(It's actually also a polynomial if w; are chosen correctly....)

r(z) =

The coefficients f; and w; are freely chosen complex numbers.

There are some important properties of this approximation:
@ If w; # 0, then r does not have a pole at z = z;.
o If w; # 0, then r(z;) = f;.
@ The above are true independent of how w; # 0 are chosen.
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The AAA algorithm L28-507

IM“«#@(

s wj fj

j=1 Z—Zj

~m  w; -
Z;'nzl z—;j

h L@{Yv/ﬂﬁw\ /)o?(/zt(

r(z) =

Given data,
(Z1,y.. s Zm), (P, ..., Far),
with f(Z;) = F;, and M » m.
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The AAA algorithm L28-507

w,fs
Z;n:l ziz;
r(z) = Zm—wj

j=]_ Z—Zj

Given data,
(Z1,y.. s Zm), (P, ..., Far),
with f(Z;) = F;, and M » m.

AAA core ideas:

@ “Intelligently” choose interpolation locations {z1,...,2zm} < {Z1,..., Zm}
(Hence choose z;, f; appropriately)

@ The {w;}jL; can be chosen arbitrarily: choose them to minimize a
least-squares residual.

The algorithm proceeds in an alternating fashion. Let m = 0.
1. Choose zm+1 (and hence fm+1§,
2. Compute weights {wj};-n:il using least-squares.

3. m < m + 1 and repeat steps.
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AAA algorithm interpolation L28-508

How is z,, 11 chosen? (I"l‘fl‘f/ﬂ [d‘hU/‘ (PO\V#S)

e If m =0, choose

i* = arg max | Fj|, 21 = Zjx.
j

o

o Ifm >X choose

j* = argmax |F; —r(Z;)], Zmt1 = Zjx.

J

The approximation r above is the m-point barycentric rational approximation from
the previous step.
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AAA algorithm least squares L28-509

n(z) 21 7=
r(z) = = -
1) S,

How are the weights {w;}7L; chosen?

First note that there is ambiguity in the normalization of the weights, so enforce

w2 = 1, w = (w1,...,Wm)" .
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AAA algorithm least squares

o-33- T~ 2 (e
How are the weights {w;}7L; chosen? ~h (?/>

First note that there is ambiguity in the normalization of the weights, so enforce
T

w2 = 1, w = (Wi,...,Wm)" .

The weights are now chosen in the linearized least squares sense:

w* =argmin ) |d(Z;)F; —n(Z;)|?,

where the index set S, corresponds to the indices j such that Z; is not an
interpolation node:

S = {jG{l,...,M}|Zj¢{21,...,zm}}.
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The Loewner matrix L28-510

The AAA least-squares minimization problem is equivalent to,
Compute w € C™ such that ||w|2 = 1 and || L, w||2 is minimized

where L,, is the Loewner matrix. With

Sm - {81’ .. '7SM—’I’)’L})

then

B F. — f
(M—m)xm o sk — )
L., € C , (Lm)kz,g Zsk — Zj,

fork=1,....M —m,and j=1,...,m.
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The Loewner matrix L28-510

The AAA least-squares minimization problem is equivalent to,
Compute w € C™ such that ||w|2 = 1 and || L, w||2 is minimized

(1

where L,, is the Loewner matrix. With

o (L)
Sm 2{81,...,8M_m}, WI,W\ M
then
_ Fs, — f;
M—m)xm s
L, € C! )X : (Lim)k,j = ﬁ’
fork=1,...,.M —m,and j=1,...,m. le., wisa (unit-norm) minimal
right-singular vector of L,,. : 7
S—
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The AAA algorithm (/{/(9,\[“/[@@( dpmxmmﬁffwj

In summary, here are steps for the AAA algorithm:

Set m = 0, set r(z) = 0.
Initialize the Loewner matrix Lg as an M x 0 matrix.

1. Compute 2,41 as

j* = argmax |F; — r(Z;)], et = Zps

J

and set fi41 = Fjx.

2. Construct L,,+1 by adding a column and removing a row.
(Columns correspond to interpolation points, rows to the rest of the points.)

(Dm—i—l

Compute w € as the minimal right-singular vector of L, 1.

Construct r for m + 1 using the new weights w and new point (zm+1, fm+1)-
Terminate if max; |F; — r(Z;)] is “small enough”. [ [0~ ‘9 >

Otherwise, m < m + 1 and repeat.
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