Rational approximation

MATH 6610 Lecture 28

November 20, 2020

Types of approximation

We considered two types of approximation:

- Fourier Series approximation (periodic functions)
- Polynomial approximation (mostly interpolation)

Both of these methods have certain (dis)advantages.

Types of approximation

We considered two types of approximation:

- Fourier Series approximation (periodic functions)
- Polynomial approximation (mostly interpolation)

Both of these methods have certain (dis)advantages.
The last type of approximation we'll consider is rational approximation.
General setup: univariate scalar-valued functions, but can be complex valued.

Rational functions
A function $R: \mathbb{C} \rightarrow \mathbb{C}$ is a rational function if it is a ratio of polynomials:

$$
r(z):=\frac{p(z)}{q(z)}, \quad p, q \in P_{n}
$$

where P_{n} is the space of polynomials of degree n and less. $\operatorname{Span}\left\{1,2, \ldots z^{n}\right\}$
Terminology: r is a rational function of "type $(\operatorname{deg} p, \operatorname{deg} q)$ ".
We'll assume throughout that p and q have no common (non-constant) divisors.
The function r is a ("strictly") proper rational function if $\operatorname{deg} p<\operatorname{deg} q$.
Note that p and q are not unique without specifying a normalization.

$$
\begin{aligned}
& r(z)=\frac{z^{2}}{z^{2}}=\frac{1}{1} \\
& \text { if } \operatorname{deg} \geq \operatorname{leg} q \geq r(z)=w(z)+\frac{u(z)}{v(z)},
\end{aligned}
$$

$$
r(z)=\frac{p(2)}{q(2)}=\frac{3-p(2)}{3-q(2)}
$$

For normalization, well assume $q(2)=1+$ (higher order terms)

A function $R: \mathbb{C} \rightarrow \mathbb{C}$ is a rational function if it is a ratio of polynomials:

$$
r(z):=\frac{p(z)}{q(z)}, \quad \quad p, q \in P_{n}
$$

where P_{n} is the space of polynomials of degree n and less.
Terminology: r is a rational function of "type ($\operatorname{deg} p, \operatorname{deg} q)$ ".
We'll assume throughout that p and q have no common (non-constant) divisors.
The function r is a ("strictly") proper rational function if $\operatorname{deg} p<\operatorname{deg} q$.
Note that p and q are not unique without specifying a normalization.
(Goal: given f, construct r such that $f \approx r$.
Why is this better (worse?) than polynomial approximation or Fourier Series?
Sone functions are very
efficiently
represented by
rational

Padè approximation (very well- (known)
One strategy for constructing rational functions is Padè approximation.
The main idea: choose $r=p / q$ such that

$$
f(z)=\frac{p(z)}{q(z)}+\mathcal{O}\left(x^{n+m+1}\right), \quad \operatorname{deg} p=m, \quad \operatorname{deg} q=n
$$

I.e., match Taylor coefficients to as high an order as possible. (Up to order $m+n$).
p has $m+1$ degrees of freedorn
q has n degrees of freedom $(q(2)=1 \ldots)$

Padè approximation
One strategy for constructing rational functions is Padè approximation.
The main idea: choose $r=p / q$ such that

$$
f(z)=\frac{p(z)}{q(z)}+\mathcal{O}\left(x^{n+m+1}\right), \quad \operatorname{deg} p=m, \quad \operatorname{deg} q=n
$$

I.e., match Taylor coefficients to as high an order as possible.

Specifically, suppose p and q have the form,

$$
r(z)=\frac{p(z)}{q(z)}=\frac{\sum_{j=0}^{m} a_{j} x^{j}}{1+\sum_{j=1}^{n} b_{j} x^{j}}
$$

for some coefficients a_{0}, \ldots, a_{m} and b_{1}, \ldots, b_{n}. (and let's define $b_{0}=1$)
How are Pate approximante formed? Taylor Series
$f(z)=\frac{p(2)}{q(2)}$ up ti order $m+n$.
$f(2)$ up ir order $m+n$ is $\sum_{j=0}^{m+n} c_{j} x^{j}$ for some (known) coeffriments C_{j}.

$$
\left.\begin{array}{l}
\sum_{j=0}^{m+n} c_{j} x^{j} \approx \frac{\sum_{j=0}^{m} a_{j} x^{j}}{\sum_{j=0}^{n} b_{j} x^{j}} \quad \text { goal: compute } a_{j}, b_{j} . \\
\left(\sum_{j=0}^{m+n} c_{j} x^{j}\right)\left(\sum_{j=0}^{n} b_{j} x^{j}\right)=\sum_{j=0}^{m} a_{j} x^{j} \\
x^{0}=b_{0} c_{0}=a_{0} \\
x^{\prime}=b_{0} c_{1}+b_{1} c_{0}=a_{1} \\
x^{2}=b_{0} c_{2}+b_{1} c_{1}+b_{2} c_{0}=a_{2} \\
\vdots \quad x^{j}: \sum_{k=0}^{j} b_{k} c_{j-k}=a_{j} \quad(0 \leq j \leq m)
\end{array}\right\} \begin{aligned}
& \text { linear in } \\
& b_{j} a_{j}
\end{aligned}
$$

continue for higher orders: $R H S=0$.

$$
x^{j}, j>m: \sum_{k=0}^{j} b_{k} c_{j-k}=0,
$$

There are n unknown coefficients $\left\{b_{k}\right\}_{k=1}^{n}$, So take n conditions:

$$
\left\{\begin{array}{l}
\sum_{k=0}^{j} 0_{k} C_{j-k}=0 \quad j \equiv m+1, m+2 \ldots, m+n . \\
\text { set of } n \text { linear equations for } n \text { unknowns. }
\end{array}\right.
$$

\rightarrow can solve via linear algebra.
second step: solve $\sum_{k=0}^{j} b_{k} c_{j-k}=a_{j}$ for $j=0, m$ for the coefficients $\left\{a_{j}\right\}_{j 20}^{m}$

Padè approximation
One strategy for constructing rational functions is Padè approximation.
The main idea: choose $r=p / q$ such that

$$
f(z)=\frac{p(z)}{q(z)}+\mathcal{O}\left(x^{n+m+1}\right), \quad \operatorname{deg} p=m, \quad \operatorname{deg} q=n
$$

I.e., match Taylor coefficients to as high an order as possible.

Specifically, suppose p and q have the form,

$$
r(z)=\frac{p(z)}{q(z)}=\frac{\sum_{j=0}^{m} a_{j} x^{j}}{1+\sum_{j=1}^{n} b_{j} x^{j}},
$$

for some coefficients a_{0}, \ldots, a_{m} and b_{1}, \ldots, b_{n}. The computation can be accomplished in a two-step procedure:

- Compute $\left\{b_{j}\right\}_{j=1}^{n}$ with a linear system matching orders $m+1, \ldots, m+n$.
- Compute $\left\{a_{j}\right\}_{j=0}^{m}$ with a linear system matching orders $0, \ldots, m$.

Rational approximation practicalities

$$
f(z)=\frac{p(z)}{q(z)}+\mathcal{O}\left(x^{n+m+1}\right), \quad \operatorname{deg} p=m, \quad \operatorname{deg} q=n
$$

In order to match coefficients, we need the Taylor expansion of f.

$$
f(z)=\frac{p(z)}{q(z)}+\mathcal{O}\left(x^{n+m+1}\right), \quad \operatorname{deg} p=m, \quad \operatorname{deg} q=n
$$

In order to match coefficients, we need the Taylor expansion of f.
This is not so practical, but it does reveal a very useful strategy: linearization.
Consider, e.g., interpolation: (alternative to Pade)

$$
r\left(z_{j}\right)=\frac{p\left(z_{j}\right)}{q\left(z_{j}\right)}=f\left(z_{j}\right), \quad j=1, \ldots, m+n+1
$$

The difficulty in imposing these conditions: they depend nonlinearly on coefficients.

$$
f(z)=\frac{p(z)}{q(z)}+\mathcal{O}\left(x^{n+m+1}\right), \quad \operatorname{deg} p=m, \quad \operatorname{deg} q=n
$$

In order to match coefficients, we need the Taylor expansion of f.
This is not so practical, but it does reveal a very useful strategy: linearization.
Consider, e.g., interpolation:

$$
r\left(z_{j}\right)=\frac{p\left(z_{j}\right)}{q\left(z_{j}\right)}=f\left(z_{j}\right), \quad j=1, \ldots, m+n+1
$$

The difficulty in imposing these conditions: they depend nonlinearly on coefficients.
Linearization: impose these conditions in a different way:

$$
q\left(z_{j}\right) f\left(z_{j}\right)=p\left(z_{j}\right), \quad j=1, \ldots, m+n+1
$$

This results in a linear system for the a_{j}, b_{j} coefficients.

$$
f(z)=\frac{p(z)}{q(z)} \quad \longrightarrow \quad q(z) f(z)=p(z)
$$

For interpolation and Padè approximation, linearization does not change formulation.

For other conditions, e.g., least-squares, linearization is different.
However, linearization provides a concrete solution strategy.

$$
f(z)=\frac{p(z)}{q(z)} \quad \longrightarrow \quad q(z) f(z)=p(z)
$$

For interpolation and Padè approximation, linearization does not change formulation.

For other conditions, e.g., least-squares, linearization is different.
However, linearization provides a concrete solution strategy.

There is one problem that linearization doesn't solve: how to ensure a good approximation?

One answer: there is an algonthm that empirically gives good approximation results: AAA.

Barycentric form
Consider an alternative "barycentric" formulation for a rational function: f_{j}, w_{j} are $\quad r(z)=\frac{\sum_{j=1}^{m} \frac{w_{j} f_{j}}{z-z_{j}}}{\sum_{j=1}^{m} \frac{w_{j}}{z-z_{j}}}=\frac{n(z)}{d(z)}, n, d$ not By eliminating denominators: this is a type $(m-1, m-1)$ rational function. (It's actually also a polynomial if w_{j} are chosen correctly....)

Consider an alternative "barycentric" formulation for a rational function:

$$
r(z)=\frac{\sum_{j=1}^{m} \frac{w_{j} f_{j}}{z-z_{j}}}{\sum_{j=1}^{m} \frac{w_{j}}{z-z_{j}}}
$$

By eliminating denominators: this is a type $(m-1, m-1)$ rational function. (It's actually also a polynomial if w_{j} are chosen correctly....)

The coefficients f_{j} and w_{j} are freely chosen complex numbers.

There are some important properties of this approximation:

- If $w_{j} \neq 0$, then r does not have a pole at $z=z_{j}$.
- If $w_{j} \neq 0$, then $r\left(z_{j}\right)=f_{j}$.
- The above are true independent of how $w_{j} \neq 0$ are chosen.

$$
\text { for } z \approx z_{3}: r(2) \simeq \frac{\frac{w_{3} f_{3}}{2-z_{3}}}{\frac{v_{3}}{}}=f_{3}
$$

$\frac{A A A}{1}$ Algorithm basic idea
"Adaptive Antoulas-Anderson" algorithm.
Given nodes \& function values $\quad f\left(Z_{j}\right)=F_{j}$
(1)

- ©
(B)
"
\because giver data $\left(Z_{j}, F_{j}\right)$

$$
j=1 \ldots M
$$

0 : interpolation points (determines z_{j}, f_{j} in Bury (enteric form)

- : linearized least-squares on these data points to determine w_{j}.

The AAA algorithm

$$
\begin{aligned}
& \text { m: \#t of interpolation points. } \\
& r(z)=\frac{\sum_{j=1}^{m} \frac{w_{j} f_{j}}{z-z_{j}}}{\sum_{j=1}^{m} \frac{w_{j}}{z-z_{j}}}
\end{aligned}
$$

Given data,

$$
\left(Z_{1}, \ldots, Z_{M}\right), \quad\left(F_{1}, \ldots, F_{M}\right)
$$

with $f\left(Z_{j}\right)=F_{j}$, and $M \gg m$.

The AAA algorithm

$$
r(z)=\frac{\sum_{j=1}^{m} \frac{w_{j} f_{j}}{z-z_{j}}}{\sum_{j=1}^{m} \frac{w_{j}}{z-z_{j}}}
$$

Given data,

$$
\left(Z_{1}, \ldots, Z_{M}\right), \quad\left(F_{1}, \ldots, F_{M}\right)
$$

with $f\left(Z_{j}\right)=F_{j}$, and $M \gg m$.
AAA core ideas:

- "Intelligently" choose interpolation locations $\left\{z_{1}, \ldots, z_{m}\right\} \subset\left\{Z_{1}, \ldots, Z_{M}\right\}$ (Hence choose z_{j}, f_{j} appropriately)
- The $\left\{w_{j}\right\}_{j=1}^{m}$ can be chosen arbitrarily: choose them to minimize a least-squares residual.
The algorithm proceeds in an alternating fashion. Let $m=0$.

1. Choose z_{m+1} (and hence f_{m+1}.).
2. Compute weights $\left\{w_{j}\right\}_{j=1}^{m+1}$ using least-squares.
3. $m \leftarrow m+1$ and repeat steps.

AAA algorithm interpolation
How is z_{m+1} chosen? (Integpo (ation points)

- If $m=0$, choose

$$
j^{*}=\underset{i}{\arg \max }\left|F_{j}\right|, \quad \quad z_{1}=Z_{j} *
$$

- If $m>x$, choose

$$
j^{*}=\underset{j}{\arg \max }\left|F_{j}-r\left(Z_{j}\right)\right|, \quad \quad z_{m+1}=Z_{j *}
$$

The approximation r above is the m-point barycentric rational approximation from the previous step.

AAA algorithm least squares

$$
r(z)=\frac{n(z)}{d(z)}=\frac{\sum_{j=1}^{m} \frac{w_{j} f_{j}}{z-z_{j}}}{\sum_{j=1}^{m} \frac{w_{j}}{z-z_{j}}}
$$

How are the weights $\left\{w_{j}\right\}_{j=1}^{m}$ chosen?
First note that there is ambiguity in the normalization of the weights, so enforce

$$
\|w\|_{2}=1, \quad w=\left(w_{1}, \ldots, w_{m}\right)^{T}
$$

$$
r(z)=\frac{n(z)}{d(z)}=\frac{\sum_{j=1}^{m} \frac{w_{j} f_{j}}{z-z_{j}}}{\sum_{j=1}^{m} \frac{w_{j}}{z-z_{j}}} \approx f(z) \Longrightarrow f(z) d(z)
$$

How are the weights $\left\{w_{j}\right\}_{j=1}^{m}$ chosen?
First note that there is ambiguity in the normalization of the weights, so enforce

$$
\|w\|_{2}=1, \quad w=\left(w_{1}, \ldots, w_{m}\right)^{T}
$$

The weights are now chosen in the linearized least squares sense:

$$
w^{*}=\underset{w \in \mathbb{C}^{m}}{\arg \min } \sum_{j \in S_{m}}\left|d\left(Z_{j}\right) F_{j}-n\left(Z_{j}\right)\right|^{2},
$$

where the index set S_{m} corresponds to the indices j such that Z_{j} is not an interpolation node:

$$
S_{m}:=\left\{j \in\{1, \ldots, M\} \mid Z_{j} \notin\left\{z_{1}, \ldots, z_{m}\right\}\right\} .
$$

$$
\begin{aligned}
& \quad l d\left(Z_{j}\right) F_{j}-\left.n\left(Z_{j}\right)\right|^{2} \\
& =\left|\sum_{k=1}^{m} \frac{F_{j} w_{k}}{Z_{Z_{j}-z_{k}}}-\sum_{k=1}^{m} \frac{f_{k} w_{k}}{\frac{z_{j}-z_{k}}{Z_{j}}}\right|^{2} \\
& =\left|\sum_{k=1}^{m}\left(\frac{F_{j}-f_{k}}{Z_{j}-z_{k}}\right) w_{k}\right|^{2}
\end{aligned}
$$

Detive L_{m} to be an $(M-m) \times m$ matriv.
Let $\left\{S_{1}, S_{2} \ldots S_{M-m}\right\}=S_{m} \quad$ (Reast-squcres indices).

$$
\left(L_{m}\right)_{j, k}=\frac{F_{s_{j}}-f_{k}}{Z_{s_{j}}-z_{k}} \quad k: \begin{gathered}
\text { interpolation } \\
\text { points }
\end{gathered}
$$

$j=$ least-squeres

$$
=\left|\left(L_{m} w\right)_{j}\right|^{2}
$$

Least-s queres residual:

$$
\begin{aligned}
& \sum_{j=1}^{M-m}\left|d\left(Z_{s_{j}}\right) F_{s_{j}}-n\left[Z_{s_{j}}\right]\right|^{2} \\
& \left.=\sum_{j=1}^{M-m} \mid\left(L_{m} w\right)_{j}\right)^{2}=\left\|\mid L_{m} w\right\|_{2}^{2}
\end{aligned}
$$

The Loewner matrix
The AAA least-squares minimization problem is equivalent to,
Compute $w \in \mathbb{C}^{m}$ such that $\|w\|_{2}=1$ and $\left\|L_{m} w\right\|_{2}$ is minimized where L_{m} is the Loewner matrix. With

$$
S_{m}=\left\{s_{1}, \ldots, s_{M-m}\right\}
$$

then

$$
L_{m} \in \mathbb{C}^{(M-m) \times m}, \quad\left(L_{m}\right)_{k, j}=\frac{F_{s_{k}}-f_{j}}{Z_{s_{k}}-z_{j}}
$$

for $k=1, \ldots, M-m$, and $j=1, \ldots, m$.

The Loewner matrix
The AAA least-squares minimization problem is equivalent to,
Compute $w \in \mathbb{C}^{m}$ such that $\|w\|_{2}=1$ and $\left\|L_{m} w\right\|_{2}$ is minimized where L_{m} is the Loewner matrix. With

$$
S_{m}=\left\{s_{1}, \ldots, s_{M-m}\right\}, \quad \sigma_{\min }\left(L_{m}\right)
$$

then

$$
L_{m} \in \mathbb{C}^{(M-m) \times m}, \quad\left(L_{m}\right)_{k, j}=\frac{F_{s_{k}}-f_{j}}{Z_{s_{k}}-z_{j}}
$$

for $k=1, \ldots, M-m$, and $j=1, \ldots, m$. I.e., w is a (unit-norm) minimal right-singular vector of L_{m}.

The AAA algorithm (NOnlineer apporoximation)
In summary, here are steps for the AAA algorithm:
Set $m=0$, set $r(z)=0$.
Initialize the Loewner matrix L_{0} as an $M \times 0$ matrix.

1. Compute z_{m+1} as

$$
j^{*}=\underset{j}{\arg \max }\left|F_{j}-r\left(Z_{j}\right)\right|, \quad \quad z_{m+1}=Z_{j^{*}}
$$

and set $f_{m+1}=F_{j *}$.
2. Construct L_{m+1} by adding a column and removing a row. (Columns correspond to interpolation points, rows to the rest of the points.)
3. Compute $w \in \mathbb{C}^{m+1}$ as the minimal right-singular vector of L_{m+1}.
4. Construct r for $m+1$ using the new weights w and new point $\left(z_{m+1}, f_{m+1}\right)$.
5. Terminate if $\max _{j}\left|F_{j}-r\left(Z_{j}\right)\right|$ is "small enough". $\left.\left(10^{-L(}\right).\right)$
6. Otherwise, $m \leftarrow m+1$ and repeat.

