L28-S00

Rational approximation

MATH 6610 Lecture 28

November 20, 2020

MATH 6610-001 — U. Utah

Rational approximation



Types of approximation L28-5S01

We considered two types of approximation:
@ Fourier Series approximation (periodic functions)
@ Polynomial approximation (mostly interpolation)

Both of these methods have certain (dis)advantages.
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Types of approximation L28-5S01

We considered two types of approximation:
@ Fourier Series approximation (periodic functions)
@ Polynomial approximation (mostly interpolation)

Both of these methods have certain (dis)advantages.
The last type of approximation we'll consider is rational approximation.

General setup: univariate scalar-valued functions, but can be complex valued.
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Rational functions L28-502

A function R : C — C is a rational function if it is a ratio of polynomials:

T(Z) = D, q € Pn,

where P, is the space of polynomials of degree n and less.

Terminology: r is a rational function of “type (degp,degq)".

We'll assume throughout that p and ¢ have no common (non-constant) divisors.
The function r is a (“strictly”) proper rational function if degp < degq.

Note that p and ¢ are not unique without specifying a normalization.
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Rational functions L28-502

A function R : C — C is a rational function if it is a ratio of polynomials:

T(Z) = D, q € Pn,

where P, is the space of polynomials of degree n and less.

Terminology: r is a rational function of “type (degp,degq)".

We'll assume throughout that p and ¢ have no common (non-constant) divisors.
The function r is a (“strictly”) proper rational function if degp < degq.

Note that p and ¢ are not unique without specifying a normalization.

Goal: given f, construct 7 such that f ~ r.

Why is this better (worse?) than polynomial approximation or Fourier Series?
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Padé approximation L28-503

One strategy for constructing rational functions is Padé approximation.

The main idea: choose r = p/q such that

f(z) = M + O(x"“"“), degp =m, degq = n.

l.e., match Taylor coefficients to as high an order as possible.
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Padé approximation L28-503

One strategy for constructing rational functions is Padé approximation.
The main idea: choose r = p/q such that

f(z) = M + O(x"“"“), degp =m, degq = n.

l.e., match Taylor coefficients to as high an order as possible.

Specifically, suppose p and g have the form,

r(z) = p(z) _ 72210 a;’
q(z) 1 +Z?=1 bjxd’
for some coefficients ao, ..., am and b1,...,bn.
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Padé approximation L28-503

One strategy for constructing rational functions is Padé approximation.
The main idea: choose r = p/q such that

f(z) = plz) O™+, degp = m, degq = n.

l.e., match Taylor coefficients to as high an order as possible.

Specifically, suppose p and g have the form,

oy = DL BT
q(z) 1 +Zj:1 bjxs
for some coefficients ao,...,am and b1,...,b,. The computation can be
accomplished in a two-step procedure:
o Compute {b;}7_; with a linear system matching orders m + 1,...,m + n.
o Compute {a;}7-, with a linear system matching orders 0,...,m.
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Rational approximation practicalities 1.28-504

fz)= p(z) + O(z™ ), degp = m, degq = n.

In order to match coefficients, we need the Taylor expansion of f.
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Rational approximation practicalities 1.28-504

fz)= p(z) + O(z™ ), degp = m, degq = n.

In order to match coefficients, we need the Taylor expansion of f.
This is not so practical, but it does reveal a very useful strategy: linearization.

Consider, e.g., interpolation:

T(Zj)=%=f(zj)7 j=1,...,m+n+1.

The difficulty in imposing these conditions: they depend nonlinearly on coefficients.
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Rational approximation practicalities 1.28-504

fz)= p(z) + O(z™ ), degp = m, degq = n.

In order to match coefficients, we need the Taylor expansion of f.
This is not so practical, but it does reveal a very useful strategy: linearization.

Consider, e.g., interpolation:

T(Zj)=%=f(zj)7 j=1,...,m+n+1.

The difficulty in imposing these conditions: they depend nonlinearly on coefficients.
Linearization: impose these conditions in a different way:
q(2) f () = p(25), j=1....m+n+l

This results in a linear system for the aj, b; coefficients.
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Linearizations L28-505

For interpolation and Padé approximation, linearization does not change
formulation.

For other conditions, e.g., least-squares, linearization is different.

However, linearization provides a concrete solution strategy.
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Linearizations L28-505

For interpolation and Padé approximation, linearization does not change
formulation.

For other conditions, e.g., least-squares, linearization is different.
However, linearization provides a concrete solution strategy.

There is one problem that linearization doesn’t solve: how to ensure a good
approximation?
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Barycentric form L28-506

Consider an alternative “barycentric” formulation for a rational function:

S, 2
r(z) = <m Wy

ijl z

By eliminating denominators: this is a type (m — 1, m — 1) rational function
(It's actually also a polynomial if w; are chosen correctly....)
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Barycentric form L28-506

Consider an alternative “barycentric” formulation for a rational function:

m w;f;
j=1 z2—2,

r(z) = =———%->.
S,

By eliminating denominators: this is a type (m — 1, m — 1) rational function.
(It's actually also a polynomial if w; are chosen correctly....)

The coefficients f; and w; are freely chosen complex numbers.

There are some important properties of this approximation:
o If w; # 0, then r does not have a pole at z = z;.
o If w; # 0, then T(ZJ‘) = fj.

@ The above are true independent of how w; # 0 are chosen.
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The AAA algorithm

Given data,

Y, wls

Z—Zj

T(Z)=m7wj

j=1 z2—2zj

(Z1,.. Zar), (P, ...

with f(Z;) = F;, and M » m.

7FM)a

L28-507
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The AAA algorithm L28-507

Z?:l ;Hizj
r(2) = S —w
j=1 z2—2zj

Given data,
(Zl,...,Z]w), (Fl,...,F‘]\/[)7
with f(Z;) = F;, and M » m.

AAA core ideas:
@ “Intelligently” choose interpolation locations {z1,...,z2m} < {Z1,..., ZM}
(Hence choose z;, f; appropriately)
@ The {w;}72; can be chosen arbitrarily: choose them to minimize a
least-squares residual.
The algorithm proceeds in an alternating fashion. Let m = 0.

1. Choose zm+1 (and hence fi41.

m+1

2. Compute weights {w;}7}" using least-squares.

3. m < m + 1 and repeat steps.

MATH 6610-001 — U. Utah Rational approximation



AAA algorithm interpolation 1.28-508

How is zm+1 chosen?

e If m =0, choose

¥ = arg max | Fj |, 21 = Zjx.
J

o If m > 1, choose

¥ = argmax |F; —r(Z;)], Zmt1 = L.
J

The approximation r above is the m-point barycentric rational approximation from
the previous step.
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AAA algorithm least squares L28-509

P wj f

_on(z) | Zuj=17z
") =G T T
=1 z—z2;

How are the weights {w;}}2; chosen?
First note that there is ambiguity in the normalization of the weights, so enforce

]z = 1, w = (w1, ., wm)".
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AAA algorithm least squares L28-509

n(z) Z;nzl zizjj

j=1 z—z;

How are the weights {w;}}2; chosen?

First note that there is ambiguity in the normalization of the weights, so enforce
T

fwla = 1, w= (s )"

The weights are now chosen in the linearized least squares sense:

w* = arg min Z |d(Z;)Fy —n(Z;)|?,

m .
weC FE€Sm

where the index set S, corresponds to the indices j such that Z; is not an
interpolation node:

Smi={je{l,....,.M}| Z; ¢ {z1,...,2m}}.

MATH 6610-001 — U. Utah Rational approximation



The Loewner matrix

L28-5S10

The AAA least-squares minimization problem is equivalent to,

Compute w € C™ such that |w|2 =1 and |Lmw|2 is minimized

where L,, is the Loewner matrix. With
Sm = {81,
then

L. e (D(Mfm)xm

ey SMfm},

fork=1,....M —m,and j=1,...,m.
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The Loewner matrix L28-5S10

The AAA least-squares minimization problem is equivalent to,
Compute w € C™ such that |w|2 =1 and |Lmw|2 is minimized

where L,, is the Loewner matrix. With

Sm = {51,...,81\/[,7”},
then
q— Fs, — f;
M s
Ly € C! m)xm, (Lm)k,j = ﬁ»
fork=1,...,M —m,and j=1,...,m. le., wis a (unit-norm) minimal

right-singular vector of L,,.
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The AAA algorithm L28-511

In summary, here are steps for the AAA algorithm:
Set m = 0, set r(z) = 0.
Initialize the Loewner matrix Lo as an M x 0 matrix.
1. Compute zy,+1 as
*

J* = argmax |F; —r(Z;)|, Zm+1 = Zjx
J

and set fri1 = Fjx.

2. Construct L;,+1 by adding a column and removing a row.
(Columns correspond to interpolation points, rows to the rest of the points.)

Compute w € C™ " as the minimal right-singular vector of Ly, 1.
Construct r for m + 1 using the new weights w and new point (2m+1, fm+1)-

Terminate if max; |F; — r(Z;)] is “small enough™.

oo kW

Otherwise, m < m + 1 and repeat.
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