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L28-S01Types of approximation

We considered two types of approximation:

Fourier Series approximation (periodic functions)

Polynomial approximation (mostly interpolation)

Both of these methods have certain (dis)advantages.

The last type of approximation we’ll consider is rational approximation.

General setup: univariate scalar-valued functions, but can be complex valued.
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L28-S02Rational functions

A function R : CÑ C is a rational function if it is a ratio of polynomials:

rpzq :“
ppzq

qpzq
, p, q P Pn,

where Pn is the space of polynomials of degree n and less.

Terminology: r is a rational function of “type pdeg p,deg qq”.

We’ll assume throughout that p and q have no common (non-constant) divisors.

The function r is a (“strictly”) proper rational function if deg p ă deg q.

Note that p and q are not unique without specifying a normalization.

Goal: given f , construct r such that f « r.

Why is this better (worse?) than polynomial approximation or Fourier Series?
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L28-S03Padè approximation

One strategy for constructing rational functions is Padè approximation.

The main idea: choose r “ p{q such that

fpzq “
ppzq

qpzq
`Opxn`m`1

q, deg p “ m, deg q “ n.

I.e., match Taylor coefficients to as high an order as possible.

Specifically, suppose p and q have the form,

rpzq “
ppzq

qpzq
“

řm
j“0 ajx

j

1`
řn

j“1 bjx
j
,

for some coefficients a0, . . . , am and b1, . . . , bn. The computation can be
accomplished in a two-step procedure:

Compute tbjunj“1 with a linear system matching orders m` 1, . . . ,m` n.

Compute taju
m
j“0 with a linear system matching orders 0, . . . ,m.
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L28-S04Rational approximation practicalities

fpzq “
ppzq

qpzq
`Opxn`m`1

q, deg p “ m, deg q “ n.

In order to match coefficients, we need the Taylor expansion of f .

This is not so practical, but it does reveal a very useful strategy: linearization.

Consider, e.g., interpolation:

rpzjq “
ppzjq

qpzjq
“ fpzjq, j “ 1, . . . ,m` n` 1.

The difficulty in imposing these conditions: they depend nonlinearly on coefficients.

Linearization: impose these conditions in a different way:

qpzjqfpzjq “ ppzjq, j “ 1, . . . ,m` n` 1.

This results in a linear system for the aj , bj coefficients.
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L28-S05Linearizations

fpzq “
ppzq

qpzq
ÝÑ qpzqfpzq “ ppzq.

For interpolation and Padè approximation, linearization does not change
formulation.

For other conditions, e.g., least-squares, linearization is different.

However, linearization provides a concrete solution strategy.

There is one problem that linearization doesn’t solve: how to ensure a good
approximation?
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L28-S06Barycentric form

Consider an alternative “barycentric” formulation for a rational function:

rpzq “

řm
j“1

wjfj
z´zj

řm
j“1

wj

z´zj

.

By eliminating denominators: this is a type pm´ 1,m´ 1q rational function.
(It’s actually also a polynomial if wj are chosen correctly....)

The coefficients fj and wj are freely chosen complex numbers.

There are some important properties of this approximation:

If wj ‰ 0, then r does not have a pole at z “ zj .

If wj ‰ 0, then rpzjq “ fj .

The above are true independent of how wj ‰ 0 are chosen.
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L28-S07The AAA algorithm

rpzq “

řm
j“1

wjfj
z´zj

řm
j“1

wj

z´zj

.

Given data,

pZ1, . . . , ZM q, pF1, . . . , FM q,

with fpZjq “ Fj , and M " m.

AAA core ideas:
“Intelligently” choose interpolation locations tz1, . . . , zmu Ă tZ1, . . . , ZMu

(Hence choose zj , fj appropriately)
The twju

m
j“1 can be chosen arbitrarily: choose them to minimize a

least-squares residual.
The algorithm proceeds in an alternating fashion. Let m “ 0.
1. Choose zm`1 (and hence fm`1.
2. Compute weights twju

m`1
j“1 using least-squares.

3. mÐ m` 1 and repeat steps.
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L28-S08AAA algorithm interpolation

How is zm`1 chosen?

If m “ 0, choose

j˚ “ argmax
j

|Fj |, z1 “ Zj˚ .

If m ą 1, choose

j˚ “ argmax
j

|Fj ´ rpZjq| , zm`1 “ Zj˚ .

The approximation r above is the m-point barycentric rational approximation from
the previous step.
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L28-S09AAA algorithm least squares

rpzq “
npzq

dpzq
“

řm
j“1

wjfj
z´zj

řm
j“1

wj

z´zj

.

How are the weights twju
m
j“1 chosen?

First note that there is ambiguity in the normalization of the weights, so enforce

}w}2 “ 1, w “ pw1, . . . , wmq
T .

The weights are now chosen in the linearized least squares sense:

w˚ “ argmin
wPCm

ÿ

jPSm

|dpZjqFj ´ npZjq|
2 ,

where the index set Sm corresponds to the indices j such that Zj is not an
interpolation node:

Sm :“
 

j P t1, . . . ,Mu
ˇ

ˇ Zj R tz1, . . . , zmu
(

.
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L28-S10The Loewner matrix

The AAA least-squares minimization problem is equivalent to,

Compute w P Cm such that }w}2 “ 1 and }Lmw}2 is minimized

where Lm is the Loewner matrix. With

Sm “ ts1, . . . , sM´mu,

then

Lm P C
pM´mqˆm, pLmqk,j “

Fsk ´ fj
Zsk ´ zj

,

for k “ 1, . . . ,M ´m, and j “ 1, . . . ,m.

I.e., w is a (unit-norm) minimal
right-singular vector of Lm.
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L28-S11The AAA algorithm

In summary, here are steps for the AAA algorithm:

Set m “ 0, set rpzq “ 0.
Initialize the Loewner matrix L0 as an M ˆ 0 matrix.

1. Compute zm`1 as

j˚ “ argmax
j

|Fj ´ rpZjq| , zm`1 “ Zj˚

and set fm`1 “ Fj˚ .

2. Construct Lm`1 by adding a column and removing a row.
(Columns correspond to interpolation points, rows to the rest of the points.)

3. Compute w P Cm`1 as the minimal right-singular vector of Lm`1.

4. Construct r for m` 1 using the new weights w and new point pzm`1, fm`1q.

5. Terminate if maxj |Fj ´ rpZjq| is “small enough”.

6. Otherwise, mÐ m` 1 and repeat.
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