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L27-S01
Polynomial approximation

We’ve seen that polynomial interpolation is unisolvent.

And we’ve explored the accuracy of polynomial interpolation.

However, our main goal is utilizing polynomial methods for integration and
differentiation.

The basic ideas:
Given function data at some points, we can construct a polynomial interpolant.
(Interpolatory quadrature) Integration: we approximate the integral of the
function as the integral of the polynomial interpolant.
(Finite differences) Differentiation: we approximate the derivative of the
function as the derivative of the polynomial interpolant.
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L27-S02
Interpolatory quadrature

With x1, . . . , xn unique, fixed nodes on ra, bs, and f a given continuous function:
Define In´1 : Cpra, bsq Ñ Pn´1 as the interpolation operator:

In´1f :“
nÿ

j“1

fpxjq`jpxq, `jpxq :“
π

k“1,...,n
k‰j

x ´ xk

xj ´ xk
.

“
nÿ

j“1

cjx
j´1, V c “ f.

An interpolatory quadrature rule is a set of nodes txju and weights twju that
results from using the integral of In´1f to approximate the integral of f :

ª b

a

fpxqdx «
ª b

a

rIn´1f spxqdx “:
nÿ

j“1

wjfpxjq.

There are two ways to compute such nodes and weights, depending on the
algorithmic strategy for In´1.

Example
Compute weights for the quadrature rule

∞1
j“´1 wjfpjq that is accurate to as high

a polynomial degree as possible.
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L27-S03
Interpolatory quadrature accuracy

The standard way to compute error estimates for polynomial quadrature: Taylor
series arguments.

Typically one utilizes an error estimate for interpolation. For n-point interpolation
on ra, bs, exact on Pn´1:

fpxq ´ rIn´1f spxq “ f pnqp⇠q
n!

nπ

j“1

px ´ xjq, ⇠ “ ⇠pxq P ra, bs.

Chaining this together with an integral:
ˇ̌
ˇ̌
ª b

a

fpxqdx ´
ª b

a

rIn´1f spxqdx
ˇ̌
ˇ̌ § pb ´ aqn`1

n!
max
xPra,bs

ˇ̌
ˇf pnqpxq

ˇ̌
ˇ .
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L27-S04
Types of quadrature rules

ª b

a

fpxqdx «
nÿ

j“1

wjfpxjq.

There are several special types of quadrature rules:
Equidistant nodes: “Newton-Cotes” rules

§ “Closed”: the endpoints are nodes (e.g., a, b)
§ “Open”: all nodes are interior to the interval

Change-of-variable tricks, e.g., used for infinite-interval quadrature

Chebyshev/arcsine-like nodal arrangements: Clenshaw-Curtis quadrature, Fejér
quadrature
Hermite quadrature: uses derivatives as well as function values
Gaussian quadrature: Fixing n, has the maximum possible polynomial degree
of exactness.
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L27-S05
Finite difference formulas

With x1, . . . , xn unique, fixed nodes on ra, bs, and f a given continuous function:
Define In´1 : Cpra, bsq Ñ Pn´1 as the interpolation operator:

In´1f :“
nÿ

j“1

fpxjq`jpxq, `jpxq :“
π

k“1,...,n
k‰j

x ´ xk

xj ´ xk
.

“
nÿ

j“1

cjx
j´1, V c “ f.

A finite difference formula rule is a set of nodes txju and weights twju that results
from using the derivative of rIn´1f spxq to approximate f 1pxq.
Some minor differences from the quadrature case:

The weights depend on the location x.
The weights can be defined by means other than interpolation.

Again, there are multiple ways to compute weights depending on how the
interpolant is identified.

Example
Compute a 3-point finite-difference formula on the nodes t´1, 0, 1u for
differentiation at x “ 0.
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L27-S06
Order of accuracy

Error estimates for finite difference formulas are computable via Taylor’s Theorem.
Recall that interpolation error on the interval ra, bs scales like pb ´ aqn`1.

Thus, finite difference formulas become more accurate as pb ´ aq Ñ 0.

To standardize this, we typically assume equidistant nodes, with a spacing of h ° 0.
The order of accuracy of a finite difference formula is typically Ophkq for some
integer k.

Example
Compute a finite difference formula and order of accuracy (error estimate) for the
three finite difference formulas:

f 1pxq « w1fpxq ` w2fpx ` hq
f 1pxq « w1fpxq ` w2fpx ´ hq
f 1pxq « w1fpx ` hq ` w2fpx ´ hq

Odds and ends: higher-order derivatives can be approximated, function derivatives
instead of function values can be used, etc.
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