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: : : L. 27-S01
Polynomial approximation

We've seen that polynomial interpolation is unisolvent.

And we've explored the accuracy of polynomial interpolation.
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: : : L. 27-S01
Polynomial approximation

We've seen that polynomial interpolation is unisolvent.
And we've explored the accuracy of polynomial interpolation.

However, our main goal is utilizing polynomial methods for integration and
differentiation.
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: . : L. 27-S01
Polynomial approximation

We've seen that polynomial interpolation is unisolvent.
And we've explored the accuracy of polynomial interpolation.
However, our main goal is utilizing polynomial methods for integration and

differentiation.

The basic ideas:

function as the integral of the polynomial interpolant.

o (Finite differences) Differentiation: we approximate the derivative of the
function as the derivative of the polynomial interpolant.
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Interpolatory quadrature L27-502

With z1,...,z, unique, fixed nodes on [a,b], and f a given continuous function:
Define I,,_1 : C([a,b]) — Pn—_1 as the interpolation operator:

In1f = ; (x;)(x), li(x) = k:ﬂ ) ai_—x;k
k)
= Zn:cjgjj_l, VC:f- (f/\ Xn >
j=1

(V = (3()
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Interpolatory quadrature L27-502

With z1,...,z, unique, fixed nodes on [a,b], and f a given continuous function:
Define I,,_1 : C([a,b]) — Pn—_1 as the interpolation operator:

Lioaf = ) f@)t (@), 4oy =[] —=

k=1,...,n LTj— Tk
k3

n
—1
= Z c;jr’ Ve=Ff.
i=1

An interpolatory quadrature rule is a set of nodes {x;} and weights {w;} that
results from using the integral of I,,_1 f to approximate the integral of f:

Lb f(x)dx ~ Lb[ln—lf](m)dx — Zn:lef(xj).

There are two ways to compute such nodes and weights, depending on the
algorithmic strategy for I,,_1.
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Interpolatory quadrature L27-502

With z1,...,z, unique, fixed nodes on [a,b], and f a given continuous function:
Define I,,_1 : C([a,b]) — Pn—_1 as the interpolation operator:

Lioaf = ) f@)t (@), 4oy =[] —=

k=1,....n LTj =Tk
k3

n
—1
= Z c;jr’ Ve=Ff.
i=1

An interpolatory quadrature rule is a set of nodes {x;} and weights {w;} that
results from using the integral of I,,_1 f to approximate the integral of f:

Lb f(x)dx ~ Lb[ln—lf](x)dx — Zn:lef(xj).

There are two ways to compute such nodes and weights, depending on the
algorithmic strategy for I,,_1.

Example
Compute weights for the quadrature rule Z;:_l w; f(j) that is accurate to as high

a polynomial degree as possible. [y He Nkﬂfml [/jl lj )
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Interpolatory quadrature accuracy L27-503

The standard way to compute error estimates for polynomial quadrature: Taylor

series arguments.

Typically one utilizes an error estimate for interpolation. For n-point interpolation
n [a,b], exact on P,_;:

n

f@) = Un-1fl(z) = f(n) E[(x—wg § =¢(x) € [a,b].
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Interpolatory quadrature accuracy L27-503

The standard way to compute error estimates for polynomial quadrature: Taylor
series arguments.

Typically one utilizes an error estimate for interpolation. For n-point interpolation
on [a,b], exact on P,,_1:

(n) n
f@) i flw) = O [@ ), c=e@elan

n
Chaining this together with an integral:

max )f(n) (x)‘

b
< ( '
a n. x€[a,b]

[ s@ar = [ s i@
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Types of quadrature rules L27-S04

e~ Sws ). ,
J“ g=t "ologe d |

There are several special types of quadrature rules: ,_4*6___,__4;_7
b

@ Equidistant nodes: “Newton-Cotes’ rules

> “Closed"”: the endpoints are nodes (e.g., a,b) "07()?4 .
> “Open’: all nodes are interior to the interval

@ Change-of-variable tricks, e.g., used for infinite-intervdl quadrature }

0 n
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Types of quadrature rules L27-S04

[ rar~ ilefm).

There are several special types of quadrature rules:

@ Equidistant nodes: “Newton-Cotes’ rules

> “Closed”: the endpoints are nodes (e.g., a,b)
> “Open’: all nodes are interior to the interval

@ Change-of-variable tricks, e.g., used for infinite-interval quadrature

@ Chebyshev/arcsine-like nodal arrangements: Clenshaw-Curtis quadrature, Fejér
quadrature

@ Hermite quadrature: uses derivatives as well as function values

b -
[ fde= Z w bl + i}W&’ Hle )
g {=
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Types of quadrature rules L27-S04

[ rar~ ilefm).

There are several special types of quadrature rules:

@ Equidistant nodes: “Newton-Cotes’ rules

> “Closed”: the endpoints are nodes (e.g., a,b)
> “Open’: all nodes are interior to the interval

Change-of-variable tricks, e.g., used for infinite-interval quadrature

Chebyshev/arcsine-like nodal arrangements: Clenshaw-Curtis quadrature, Fejér
quadrature

@ Hermite quadrature: uses derivatives as well as function values

@ Gaussian quadrature: Fixing n, has the maximum possible polynomial degree
of exactness.

(Talle ahrat /WM a(’fu T’ﬁ /"/I‘ng>
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Finite difference formulas (‘Wmh( i e of d@‘”)\’m[’&é() L27-505

With z1,...,z, unique, fixed nodes on [a,b], and f a given continuous function:
Define I,,—1 : C([a,b]) — P,—1 as the interpolation operator:

In1f = Z (x;);(x), li(x) = H :r;.—xk :

n
_ pd 1 —
= Z c;r’ T, Ve=f.
J=1
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Finite difference formulas L27-505

With z1,...,z, unique, fixed nodes on [a,b], and f a given continuous function:
Define I,,—1 : C([a,b]) — P,—1 as the interpolation operator:

Loaf = ) Fl@)t (@), Gla)= ] —=

n
_ pd 1 —
= Z c;r’ T, Ve=f.
J=1

A finite difference formula rule is a set of nodes {z;} and weights {w,} that results
rom using the derivative of [I,,—1 f](z) to approximate f'(x).
Some minor differences from the quadrature case:

@ The weights depend on the location . (ﬁ)
@ The weights can be defined by means other than interpolation. (T&{&IN fm\e@)
Again, there are multiple ways to compute weights depending on how the

interpolant is identified. " /\,w Wd =~ WJ‘ {')(,)
LS (T, 8) () = ZHXJ) ZJ/(X)
gl
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Finite difference formulas L27-505

With z1,...,z, unique, fixed nodes on [a,b], and f a given continuous function:
Define I,,—1 : C([a,b]) — P,—1 as the interpolation operator:

Loaf = ) Fl@)t (@), Gla)= ] —=

k=1,....n Lj — Tk
k#j

n
_ pd 1 —
= Z c;r’ T, Ve=f.
J=1

A finite difference formula rule is a set of nodes {z;} and weights {w,} that results
from using the derivative of [I,,—1f](x) to approximate f'(x).
Some minor differences from the quadrature case:

@ The weights depend on the location .

@ The weights can be defined by means other than interpolation.
Again, there are multiple ways to compute weights depending on how the
interpolant is identified.

Example

Compute a 3-point finite-difference formula on the nodes {—1,0, 1} for
differentiation at = = 0.
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Order of accuracy L27-506

Error estimates for finite difference formulas are computable via Taylor's Theorem.
Recall that interpolation error on the interval [a, b] scales like (b — a)™ ™.

Thus, finite difference formulas become more accurate as (b — a) — 0.
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Order of accuracy L27-506

Error estimates for finite difference formulas are computable via Taylor's Theorem.
Recall that interpolation error on the interval [a, b] scales like (b — a)™ ™.

Thus, finite difference formulas become more accurate as (b — a) — 0.

To standardize this, we typically assume equidistant nodes, with a spacing of h > 0.
The order of accuracy of a finite difference formula is typlcally O(h*) for some

integer k. .
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Order of accuracy L27-506

Error estimates for finite difference formulas are computable via Taylor's Theorem.
Recall that interpolation error on the interval [a, b] scales like (b — a)™ ™.

Thus, finite difference formulas become more accurate as (b — a) — 0.

To standardize this, we typically assume equidistant nodes, with a spacing of h > 0.
The order of accuracy of a finite difference formula is typically O(h*) for some
integer k.

Example

Compute a finite difference formula and order of accuracy (error estimate) for the
three finite difference formulas:

)~ wif(z) +waf(@+h) (2~ ~p fomyla )
F(2) ~ wi f(2) + wa f (x — h)
)~ (e h) +waf@=h) (0 formy ], )
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Order of accuracy L27-506

Error estimates for finite difference formulas are computable via Taylor's Theorem.
Recall that interpolation error on the interval [a, b] scales like (b — a)™ ™.

Thus, finite difference formulas become more accurate as (b — a) — 0.

To standardize this, we typically assume equidistant nodes, with a spacing of h > 0.
The order of accuracy of a finite difference formula is typically O(h*) for some
integer k.

Example

Compute a finite difference formula and order of accuracy (error estimate) for the
three finite difference formulas:

f(x) ~ wi f(x) + wa f (x + h)
f(x) ~ w f(x) + wa f (x — h)
f(x) ~ wif(z+ h) + w2 f(x — h)

Odds and ends: higher-order derivatives can be approximated, function derivatives
instead of function values can be used, etc.
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