L27-S00

Integration/differentiation with polynomial approximations

MATH 6610 Lecture 27

November 18, 2020

MATH 6610-001 — U. Utah Polynomial approximations

: : : L. 27-S01
Polynomial approximation

We've seen that polynomial interpolation is unisolvent.

And we've explored the accuracy of polynomial interpolation.

[Lehee guﬁ)

MATH 6610-001 — U. Utah Polynomial approximations

: : : L. 27-S01
Polynomial approximation

We've seen that polynomial interpolation is unisolvent.
And we've explored the accuracy of polynomial interpolation.

However, our main goal is utilizing polynomial methods for integration and
differentiation.

MATH 6610-001 — U. Utah Polynomial approximations

: . : L. 27-S01
Polynomial approximation

We've seen that polynomial interpolation is unisolvent.
And we've explored the accuracy of polynomial interpolation.
However, our main goal is utilizing polynomial methods for integration and

differentiation.

The basic ideas:

function as the integral of the polynomial interpolant.

o (Finite differences) Differentiation: we approximate the derivative of the
function as the derivative of the polynomial interpolant.

(5 8042 (TN by = @ b ol Tfe,

[,,LT.A[(&) dy

MATH 6610-001 — U. Utah Polynomial approximations

Jlor(o {\a" f'ht,’_"_ !
Fike- ditferance L1/ - L e

: _
AT (TeYb)= 2 w £l
. = 0

!

X
G ‘xl)(;ﬂ)(5)((15

Interpolatory quadrature L27-502

With z1,...,z, unique, fixed nodes on [a,b], and f a given continuous function:
Define I,,_1 : C([a,b]) — Pn—_1 as the interpolation operator:

In1f = ; (x;)(x), li(x) = k:ﬂ) ai_—x;k
k)
= Zn:cjgjj_l, VC:f- (f/\ Xn >
j=1

(V = (3()

MATH 6610-001 — U. Utah Polynomial approximations

Interpolatory quadrature L27-502

With z1,...,z, unique, fixed nodes on [a,b], and f a given continuous function:
Define I,,_1 : C([a,b]) — Pn—_1 as the interpolation operator:

Lioaf =) f@)t (@), 4oy =[] —=

k=1,...,n LTj— Tk
k3

n
—1
= Z c;jr’ Ve=Ff.
i=1

An interpolatory quadrature rule is a set of nodes {x;} and weights {w;} that
results from using the integral of I,,_1 f to approximate the integral of f:

Lb f(x)dx ~ Lb[ln—lf](m)dx — Zn:lef(xj).

There are two ways to compute such nodes and weights, depending on the
algorithmic strategy for I,,_1.

MATH 6610-001 — U. Utah Polynomial approximations

Interpolatory quadrature L27-502

With z1,...,z, unique, fixed nodes on [a,b], and f a given continuous function:
Define I,,_1 : C([a,b]) — Pn—_1 as the interpolation operator:

Lioaf =) f@)t (@), 4oy =[] —=

k=1,....n LTj =Tk
k3

n
—1
= Z c;jr’ Ve=Ff.
i=1

An interpolatory quadrature rule is a set of nodes {x;} and weights {w;} that
results from using the integral of I,,_1 f to approximate the integral of f:

Lb f(x)dx ~ Lb[ln—lf](x)dx — Zn:lef(xj).

There are two ways to compute such nodes and weights, depending on the
algorithmic strategy for I,,_1.

Example
Compute weights for the quadrature rule Z;:_l w; f(j) that is accurate to as high

a polynomial degree as possible. [y He Nkﬂfml [/jl lj)

MATH 6610-001 — U. Utah Polynomial approximations

by = w B s w b L))
Lwray ¢
\4> EVIW V"lj(/lf?qu(6XKZL7L7\@(§

f_i Wiy = W, HJJ Fu (03“’? ” (1)’

ﬁaﬁJ os Lwse as presble,

Functjon Ay
R A
d':_ , 0':: ~W~l £ Wl /9 %mgl g&q/@]#wk
2
d;l E PRV J’Wl
s c——> \A/:L = W
W W’l - - -3 -\
=Y
W= s

L Fk= & 0eny LE0F %)

(W/(O/- v pé PL)

Ths prcedue K eravaledt fo onfyes,
exq et M@mhw @ﬂ an fnkrp@/wmﬂ %

2.) Ung L«ﬂrzwz% farm

(| !
s ~ | (T _¢ =2 w[f
[, Flady S,)Cm 0 dx &“Z'/ W b)
(n=3)
N AE ;ZI - 2 [x)
4 (y)/ (001 = Lo -
| (-) ()-1) 29([)()
2)= (etDlt] -y
(1) (-1

A ly)= ((E;—n% - iﬂ{(wl)

(\ [
g,,@:mﬁ)(x) dx = Z 1%‘)' S,l [J LZMY
=" N

i

(same a belye) (exact on P.)

Interpolatory quadrature accuracy L27-503

The standard way to compute error estimates for polynomial quadrature: Taylor

series arguments.

Typically one utilizes an error estimate for interpolation. For n-point interpolation
n [a,b], exact on P,_;:

n

f@) = Un-1fl(z) = f(n) E[(x—wg § =¢(x) € [a,b].
%
fore Lges e

= ({2t = [(5 A0 dy |

(bfmg&) N
/ o

%) dy |

MATI-{ 6610-001 — U. Utah

Polynomial approximations

g wie: |) | £ poa)
2L ()],

:th

nl ‘Cm (f &])Uy

4

£ MM] Mg, X {\C[M(H
Vl! %€ Lah] X

{ngaq qci,wﬁ JZWJ(on SmpotHlag §

Interpolatory quadrature accuracy L27-503

The standard way to compute error estimates for polynomial quadrature: Taylor
series arguments.

Typically one utilizes an error estimate for interpolation. For n-point interpolation
on [a,b], exact on P,,_1:

(n) n
f@) i flw) = O [@), c=e@elan

n
Chaining this together with an integral:

max)f(n) (x)‘

b
< ('
a n. x€[a,b]

[s@ar = [s i@

MATH 6610-001 — U. Utah Polynomial approximations

Types of quadrature rules L27-S04

e~ Sws). ,
J“ g=t "ologe d |

There are several special types of quadrature rules: ,_4*6___,__4;_7
b

@ Equidistant nodes: “Newton-Cotes’ rules

> “Closed"”: the endpoints are nodes (e.g., a,b) "07()?4 .
> “Open’: all nodes are interior to the interval

@ Change-of-variable tricks, e.g., used for infinite-intervdl quadrature }

0 n
[q e <2y Xj/—\ H)Jg %)
% - YZ&% ——te——ted L

Goely) A acbey/ 7

MATH 6610-001 — U. Utah Polynomial approximations

Types of quadrature rules L27-S04

[rar~ ilefm).

There are several special types of quadrature rules:

@ Equidistant nodes: “Newton-Cotes’ rules

> “Closed”: the endpoints are nodes (e.g., a,b)
> “Open’: all nodes are interior to the interval

@ Change-of-variable tricks, e.g., used for infinite-interval quadrature

@ Chebyshev/arcsine-like nodal arrangements: Clenshaw-Curtis quadrature, Fejér
quadrature

@ Hermite quadrature: uses derivatives as well as function values

b -
[fde= Z w bl + i}W&’ Hle)
g {=

MATH 6610-001 — U. Utah Polynomial approximations

Types of quadrature rules L27-S04

[rar~ ilefm).

There are several special types of quadrature rules:

@ Equidistant nodes: “Newton-Cotes’ rules

> “Closed”: the endpoints are nodes (e.g., a,b)
> “Open’: all nodes are interior to the interval

Change-of-variable tricks, e.g., used for infinite-interval quadrature

Chebyshev/arcsine-like nodal arrangements: Clenshaw-Curtis quadrature, Fejér
quadrature

@ Hermite quadrature: uses derivatives as well as function values

@ Gaussian quadrature: Fixing n, has the maximum possible polynomial degree
of exactness.

(Talle ahrat /WM a(’fu T’ﬁ /"/I‘ng>

MATH 6610-001 — U. Utah Polynomial approximations

Finite difference formulas (‘Wmh(i e of d@‘”)\’m[’&é() L27-505

With z1,...,z, unique, fixed nodes on [a,b], and f a given continuous function:
Define I,,—1 : C([a,b]) — P,—1 as the interpolation operator:

In1f = Z (x;);(x), li(x) = H :r;.—xk :

n
_ pd 1 —
= Z c;r’ T, Ve=f.
J=1

MATH 6610-001 — U. Utah Polynomial approximations

Finite difference formulas L27-505

With z1,...,z, unique, fixed nodes on [a,b], and f a given continuous function:
Define I,,—1 : C([a,b]) — P,—1 as the interpolation operator:

Loaf =) Fl@)t (@), Gla)=] —=

n
_ pd 1 —
= Z c;r’ T, Ve=f.
J=1

A finite difference formula rule is a set of nodes {z;} and weights {w,} that results
rom using the derivative of [I,,—1 f](z) to approximate f'(x).
Some minor differences from the quadrature case:

@ The weights depend on the location . (ﬁ)
@ The weights can be defined by means other than interpolation. (T&{&IN fm\e@)
Again, there are multiple ways to compute weights depending on how the

interpolant is identified. " /\,w Wd =~ WJ‘ {')(,)
LS (T, 8) () = ZHXJ) ZJ/(X)
gl

MATH 6610-001 — U. Utah Polynomial approximations

Finite difference formulas L27-505

With z1,...,z, unique, fixed nodes on [a,b], and f a given continuous function:
Define I,,—1 : C([a,b]) — P,—1 as the interpolation operator:

Loaf =) Fl@)t (@), Gla)=] —=

k=1,....n Lj — Tk
k#j

n
_ pd 1 —
= Z c;r’ T, Ve=f.
J=1

A finite difference formula rule is a set of nodes {z;} and weights {w,} that results
from using the derivative of [I,,—1f](x) to approximate f'(x).
Some minor differences from the quadrature case:

@ The weights depend on the location .

@ The weights can be defined by means other than interpolation.
Again, there are multiple ways to compute weights depending on how the
interpolant is identified.

Example

Compute a 3-point finite-difference formula on the nodes {—1,0, 1} for
differentiation at = = 0.

MATH 6610-001 — U. Utah Polynomial approximations

1 v)=5 xbx-1)

A
2= 5 (]

oy = (L e)) = 2 Hp) £ t0)

L0)=(v-9)1 .1

Order of accuracy L27-506

Error estimates for finite difference formulas are computable via Taylor's Theorem.
Recall that interpolation error on the interval [a, b] scales like (b — a)™ ™.

Thus, finite difference formulas become more accurate as (b — a) — 0.

Totemetd a4 ((9“01>‘>0/ Wv/l é{déf u, ‘QW!H/(L{IZ;QW@
fagr-

G g0ty 20y !

MATH 6610-001 — U. Utah Polynomial approximations

Order of accuracy L27-506

Error estimates for finite difference formulas are computable via Taylor's Theorem.
Recall that interpolation error on the interval [a, b] scales like (b — a)™ ™.

Thus, finite difference formulas become more accurate as (b — a) — 0.

To standardize this, we typically assume equidistant nodes, with a spacing of h > 0.
The order of accuracy of a finite difference formula is typlcally O(h*) for some

integer k. .
i‘a&&? |4 IMNyon (2 nafe
21 v B
4—""_ W Funcation e

o ¥ v

—

1

MATH 6610-001 — U. Utah Polynomial approximations

Order of accuracy L27-506

Error estimates for finite difference formulas are computable via Taylor's Theorem.
Recall that interpolation error on the interval [a, b] scales like (b — a)™ ™.

Thus, finite difference formulas become more accurate as (b — a) — 0.

To standardize this, we typically assume equidistant nodes, with a spacing of h > 0.
The order of accuracy of a finite difference formula is typically O(h*) for some
integer k.

Example

Compute a finite difference formula and order of accuracy (error estimate) for the
three finite difference formulas:

)~ wif(z) +waf(@+h) (2~ ~p fomyla)
F(2) ~ wi f(2) + wa f (x — h)
)~ (e h) +waf@=h) (0 formy],)

MATH 6610-001 — U. Utah Polynomial approximations

[4) Could ug [-dgf‘dﬂg/ Q}rMM Im&téaé /a&/&ﬁfzneg

v +Ll£’()+/}£/§) Sely,x+h]
Feth) = /) Y e
Td&[ﬁf

f)+ v 'HX*M y
- w S+ w, B0 £ P o £176)

AN ~— WV
. ——

\rfz/j L’[X)

w, =0 _L
(w(tw) flyl=p =7 T % W, ?
hw, £/lv) 2 ") = ﬁw = w, = /h

WL[XFW(:V%) ﬁ[y)f-/wfﬂfgj

q%S:W L) ¢ (k)

4
trwmeq e o™

Cevvr/arocpmfé g i

(6 Fleh)y= Hy £ hEG)« g0p2)
/
Ta&(ar

w, Elth) ey
=t () ¢ L0 hw, —hv) + (43T 004

Olv, bd ro(u)
Ay
w AW, = @ } W= CQ-LA_
hve~hw, = | W= 'j,‘

wifbeh) b w L) = $1) + oCwhT ol)
= MxJ‘FO(M

afe ol (ﬂwlﬁi
Hunodion ey O[M
(fuis s yggr)
(ot e8hwmale -
Besh) = L)« hE) + & AOELaSN
i N Y (W)

| / 0,
w, kbeh) +w, Ll-h) = £) o W§ %)

= [[y) 0“2)
Serond “No&r Alluale.
e of coav: L

Order of accuracy L27-506

Error estimates for finite difference formulas are computable via Taylor's Theorem.
Recall that interpolation error on the interval [a, b] scales like (b — a)™ ™.

Thus, finite difference formulas become more accurate as (b — a) — 0.

To standardize this, we typically assume equidistant nodes, with a spacing of h > 0.
The order of accuracy of a finite difference formula is typically O(h*) for some
integer k.

Example

Compute a finite difference formula and order of accuracy (error estimate) for the
three finite difference formulas:

f(x) ~ wi f(x) + wa f (x + h)
f(x) ~ w f(x) + wa f (x — h)
f(x) ~ wif(z+ h) + w2 f(x — h)

Odds and ends: higher-order derivatives can be approximated, function derivatives
instead of function values can be used, etc.

MATH 6610-001 — U. Utah Polynomial approximations

