Polynomial approximation, II

MATH 6610 Lecture 26

November 13, 2020

Polynomial approximation

We've seen that polynomial interpolation is unisolvent. (in 10)

Given a continuous f and distinct nodes x_1, \ldots, x_{n+1} , then the Lagrange form of the interpolant is

$$p(x) = \sum_{j=1}^{n+1} f(x_j) \ell_j(x), \qquad \qquad \ell_j(x) \coloneqq \prod_{\substack{\ell=1,\ldots,n+1 \ \ell
eq j}} rac{x-x_\ell}{x_j-x_\ell}.$$

Polynomial approximation

We've seen that polynomial interpolation is unisolvent.

Given a continuous f and distinct nodes x_1, \ldots, x_{n+1} , then the Lagrange form of the interpolant is

$$p(x) = \sum_{j=1}^{n+1} f(x_j) \ell_j(x), \qquad \qquad \ell_j(x) := \prod_{\substack{\ell = 1, \dots, n+1 \\ \ell \neq j}} \frac{x - x_\ell}{x_j - x_\ell}.$$

Today: how accurate is this interpolant?

Polynomial approximation

We've seen that polynomial interpolation is unisolvent.

Given a continuous f and distinct nodes x_1, \ldots, x_{n+1} , then the Lagrange form of the interpolant is

$$p(x) = \sum_{j=1}^{n+1} f(x_j) \ell_j(x), \qquad \ell_j(x) := \prod_{\substack{\ell = 1, \dots, n+1 \\ \ell \neq j}} \frac{x - x_\ell}{x_j - x_\ell}.$$

Today: how accurate is this interpolant?

and we metrize C([a,b]) with the norm,

$$||f|| = ||f||_{\infty} := \sup_{x \in [a,b]} |f(x)|.$$

Lebesgue functions and constants

To address accuracy, we investigate the stability of interpolation.

With x_1, \ldots, x_{n+1} unique, fixed nodes, define $I_n : C([a,b]) \to P_n$ as the interpolation operator:

$$I_n f \coloneqq \sum_{j=1}^{n+1} f(x_j) \ell_j(x).$$
 (In is linear!)

(Note: I_n is a projector!) I_n . I_n I_n I_n I_n I_n

Stability:
$$||In|| = \sup_{f \neq 0} \frac{||Inf||}{||f||} = \sup_{||f|| = 1} ||Inf||$$
Induced

We can also look at stability of interpolation at a particular $x \in [a,b]$.

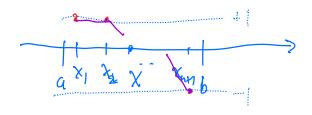
This notion of stobility: sup $|I_nf(x)|$ $= \sup_{\|f\|=1} \left\{ \sum_{j=1}^{n+1} f(x_j) |f_j(x_j)| \right\}$ $(A) \leq \sup_{\|f\|=1} \frac{\min_{j=1}^{n+1} |f(x_j)| \cdot |f_j(x_j)|}{\|f\|=1} \int_{j=1}^{n+1} |f(x_j)| \cdot |f_j(x_j)|$

$$(AA) \leq \sum_{\hat{j}=1}^{n+1} |\ell_j(x)|,$$

We can make this an equality:

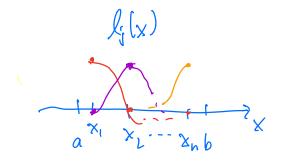
(A): choose f(x) = sgn (x).

(AS): pick f as pw-linear between X;



So: Sup
$$|I_nF(x)| = \sum_{j=1}^{n+1} |I_j(x)|^2 = \lambda(x)$$

Lebesgue
function



$$\frac{\lambda(x)}{\lambda(x)}$$

Lebesgue functions and constants

To address accuracy, we investigate the stability of interpolation.

With x_1, \ldots, x_{n+1} unique, fixed nodes, define $I_n : C([a,b]) \to P_n$ as the interpolation operator:

$$I_n f := \sum_{j=1}^{n+1} f(x_j) \ell_j(x).$$

(Note: I_n is a projector!)

A computation shows that

$$||I_n||_{C([a,b])\to P_n} = \Lambda := ||\lambda(x)||_{\infty},$$

where

$$\lambda(x) := \sum_{j=1}^{n+1} |\ell_j(x)|$$

 λ is called the Lebesgue function, and Λ the Lebesgue constant.

Stability gives us a way to investigate accuracy, 11 f - Inf1 = 11 f - p + p - Inf11 $(p \in P_n)$ = ||f-p|| + ||p-Inf|| $= \|F-\rho\| + \|I_n \rho - I_n f\| \quad (\rho = I_n \rho)$ = 11f-p11+ 11 In (p-f) 11 (In is linear) = If-plit II In 11 - 11p-fil (frue for all induced norms) = ([+1) |If-p|| => IIF-Infl/= (I+1). inf IIf-p//
pepn depends only on notes bees polynomial approx error. independent of nodal choice. independent of f.

(depends only on f, n).

Lebesgue's Lemma

With the operator norm of interpolation, here is a classical result quantifying the quality of polynomial interpolation:

Lemma (Lebesgue)

Let $f \in C([a,b])$, and assume that x_1, \ldots, x_{n+1} are distinct nodes on [a,b]. Then

$$\|f - I_n f\|_{\infty} \leqslant (1 + \Lambda) \inf_{p \in P_n} \|f - p\|_{\infty}$$

Thus, the Lebesgue constant governs the accuracy of polynomial interpolants.

Nodal sets

This raises the question: can we minimize Lebesgue constants?

Let Λ_n denote the Lebesgue constant for n+1 points.

 Λ_n and Λ_{n+1} need not have common nodes.

(We have a general triangular array of notes:
$$x_{1,1} \leftarrow A_1$$
 $x_{1,2} \quad x_{2,2} \leftarrow A_2$
 $x_{1,3} \leftarrow A_3$

Nodal sets

This raises the question: can we minimize Lebesgue constants?

Let Λ_n denote the Lebesgue constant for n+1 points.

 Λ_n and Λ_{n+1} need not have common nodes.

- For any triangular array of points, $\Lambda_n \stackrel{n \uparrow \infty}{\to} \infty$.
- For equidistant nodes, $\Lambda_n \sim 2^n$. (This is bad!)
- For "Chebyshev" nodes , $\Lambda_n \sim \log n$. (This is asymptotically optimal)

Chebyshev nodes x_j (say on [-1,1]) are equidistant nodes under the cosine map:

$$x_j = \cos \theta_j, \qquad \theta_j = \frac{2j-1}{2n+2}\pi, \qquad j=1,\dots,n+1.$$
 (clusters nodes at boundary)

Another error estimate

There are alternative strategies to computing error estimates for interpolation.

With x_1, \ldots, x_{n+1} the nodes, the *nodal polynomial* $\omega(x)$ is

$$\omega(x) := \prod_{j=1}^{n+1} (x - x_j).$$

Another error estimate

There are alternative strategies to computing error estimates for interpolation.

With x_1, \ldots, x_{n+1} the nodes, the *nodal polynomial* $\omega(x)$ is

$$\omega(x) := \prod_{j=1}^{n+1} (x - x_j).$$

This can be used to construct an error estimate:

Theorem

Let x_1, \ldots, x_{n+1} be distinct nodes on [a, b]. Then

$$|f(x) - [I_n f](x)| = \frac{|f^{(n+1)}(\xi)|}{(n+1)!} |\omega(x)|,$$

where $\xi = \xi(x)$ lies in [a, b].