Polynomial approximation, II

MATH 6610 Lecture 26

November 13, 2020

Polynomial approximation

We've seen that polynomial interpolation is unisolvent.
Given a continuous f and distinct nodes x_{1}, \ldots, x_{n+1}, then the Lagrange form of the interpolant is

$$
p(x)=\sum_{j=1}^{n+1} f\left(x_{j}\right) \ell_{j}(x), \quad \quad \ell_{j}(x):=\prod_{\substack{\ell=1, \ldots, n+1 \\ \ell \neq j}} \frac{x-x_{\ell}}{x_{j}-x_{\ell}}
$$

Polynomial approximation
We've seen that polynomial interpolation is unisolvent.
Given a continuous f and distinct nodes x_{1}, \ldots, x_{n+1}, then the Lagrange form of the interpolant is

$$
p(x)=\sum_{j=1}^{n+1} f\left(x_{j}\right) \ell_{j}(x), \quad \quad \ell_{j}(x):=\prod_{\substack{\ell=1, \ldots, n+1 \\ \ell \neq j}} \frac{x-x_{\ell}}{x_{j}-x_{\ell}}
$$

Today: how accurate is this interpolant?

Polynomial approximation
We've seen that polynomial interpolation is unisolvent.
Given a continuous f and distinct nodes x_{1}, \ldots, x_{n+1}, then the Lagrange form of the interpolant is

$$
p(x)=\sum_{j=1}^{n+1} f\left(x_{j}\right) \ell_{j}(x), \quad \quad \ell_{j}(x):=\prod_{\substack{\ell=1, \ldots, n+1 \\ \ell \neq j}} \frac{x-x_{\ell}}{x_{j}-x_{\ell}}
$$

Today: how accurate is this interpolant?
We'll need some notation:
$P_{n}:=\operatorname{span}\left\{1, x, \ldots, x^{n}\right\}, \quad C([a, b]):=\{f:[a, b] \rightarrow \infty \mid f$ is continuous on $[a, b]\}$, and we metrize $C([a, b])$ with the norm,

$$
\|f\|=\|f\|_{\infty}:=\sup _{x \in[a, b]}|f(x)|
$$

Lebesgue functions and constants
To address accuracy, we investigate the stability of interpolation.
With x_{1}, \ldots, x_{n+1} unique, fixed nodes, define $I_{n}: C([a, b]) \rightarrow P_{n}$ as the interpolation operator:

$$
I_{n} f:=\sum_{j=1}^{n+1} f\left(x_{j}\right) \ell_{j}(x)
$$

(Note: I_{n} is a projector!)

Lebesgue functions and constants
To address accuracy, we investigate the stability of interpolation.
With x_{1}, \ldots, x_{n+1} unique, fixed nodes, define $I_{n}: C([a, b]) \rightarrow P_{n}$ as the interpolation operator:

$$
I_{n} f:=\sum_{j=1}^{n+1} f\left(x_{j}\right) \ell_{j}(x)
$$

(Note: I_{n} is a projector!)
A computation shows that

$$
\left\|I_{n}\right\|_{C([a, b]) \rightarrow P_{n}}=\Lambda:=\|\lambda(x)\|_{\infty}
$$

where

$$
\lambda(x):=\sum_{j=1}^{n+1}\left|\ell_{j}(x)\right|
$$

λ is called the Lebesgue function, and Λ the Lebesgue constant.

Lebesgue's Lemma

With the operator norm of interpolation, here is a classical result quantifying the quality of polynomial interpolation:
Lemma (Lebesgue)
Let $f \in C([a, b])$, and assume that x_{1}, \ldots, x_{n+1} are distinct nodes on $[a, b]$. Then

$$
\left\|f-I_{n} f\right\|_{\infty} \leqslant(1+\Lambda) \inf _{p \in P_{n}}\|f-p\|_{\infty}
$$

Thus, the Lebesgue constant governs the accuracy of polynomial interpolants.

Nodal sets

This raises the question: can we minimize Lebesgue constants?
Let Λ_{n} denote the Lebesgue constant for $n+1$ points.
Λ_{n} and Λ_{n+1} need not have common nodes.

Nodal sets

This raises the question: can we minimize Lebesgue constants?
Let Λ_{n} denote the Lebesgue constant for $n+1$ points.
Λ_{n} and Λ_{n+1} need not have common nodes.

- For any triangular array of points, $\Lambda_{n} \xrightarrow{n \uparrow \infty} \infty$.
- For equidistant nodes, $\Lambda_{n} \sim 2^{n}$. (This is bad!)
- For "Chebyshev" nodes, $\Lambda_{n} \sim \log n$. (This is asymptotically optimal)

Chebyshev nodes x_{j} (say on $[-1,1]$) are equidistant nodes under the cosine map:

$$
x_{j}=\cos \theta_{j}, \quad \theta_{j}=\frac{2 j-1}{2 n+2} \pi, \quad j=1, \ldots, n+1 .
$$

Another error estimate

There are alternative strategies to computing error estimates for interpolation.
With x_{1}, \ldots, x_{n+1} the nodes, the nodal polynomial $\omega(x)$ is

$$
\omega(x):=\prod_{j=1}^{n+1}\left(x-x_{j}\right)
$$

Another error estimate
There are alternative strategies to computing error estimates for interpolation.
With x_{1}, \ldots, x_{n+1} the nodes, the nodal polynomial $\omega(x)$ is

$$
\omega(x):=\prod_{j=1}^{n+1}\left(x-x_{j}\right)
$$

This can be used to construct an error estimate:
Theorem
Let x_{1}, \ldots, x_{n+1} be distinct nodes on $[a, b]$. Then

$$
\left|f(x)-\left[I_{n} f\right](x)\right|=\frac{\left|f^{(n+1)}(\xi)\right|}{(n+1)!}|\omega(x)|
$$

where $\xi=\xi(x)$ lies in $[a, b]$.

