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L26-S01Polynomial approximation

We’ve seen that polynomial interpolation is unisolvent.

Given a continuous f and distinct nodes x1, . . . , xn`1, then the Lagrange form of
the interpolant is

ppxq “
n`1
ÿ

j“1

fpxjq`jpxq, `jpxq :“
ź

`“1,...,n`1
`‰j

x´ x`
xj ´ x`

.

Today: how accurate is this interpolant?

We’ll need some notation:

Pn :“ spant1, x, . . . , xnu, Cpra, bsq :“
 

f : ra, bs Ñ 8
ˇ

ˇ f is continuous on ra, bs
(

,

and we metrize Cpra, bsq with the norm,

}f} “ }f}8 :“ sup
xPra,bs

|fpxq|.
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L26-S02Lebesgue functions and constants

To address accuracy, we investigate the stability of interpolation.

With x1, . . . , xn`1 unique, fixed nodes, define In : Cpra, bsq Ñ Pn as the
interpolation operator:

Inf :“
n`1
ÿ

j“1

fpxjq`jpxq.

(Note: In is a projector!)

A computation shows that

}In}Cpra,bsqÑPn “ Λ :“ }λpxq}
8
,

where

λpxq :“
n`1
ÿ

j“1

|`jpxq|

λ is called the Lebesgue function, and Λ the Lebesgue constant.

MATH 6610-001 – U. Utah Polynomial approximation, II



L26-S02Lebesgue functions and constants

To address accuracy, we investigate the stability of interpolation.

With x1, . . . , xn`1 unique, fixed nodes, define In : Cpra, bsq Ñ Pn as the
interpolation operator:

Inf :“
n`1
ÿ

j“1

fpxjq`jpxq.

(Note: In is a projector!)

A computation shows that

}In}Cpra,bsqÑPn “ Λ :“ }λpxq}
8
,

where

λpxq :“
n`1
ÿ

j“1

|`jpxq|

λ is called the Lebesgue function, and Λ the Lebesgue constant.

MATH 6610-001 – U. Utah Polynomial approximation, II



L26-S03Lebesgue’s Lemma

With the operator norm of interpolation, here is a classical result quantifying the
quality of polynomial interpolation:

Lemma (Lebesgue)
Let f P Cpra, bsq, and assume that x1, . . . , xn`1 are distinct nodes on ra, bs. Then

}f ´ Inf}8 ď p1` Λq inf
pPPn

}f ´ p}
8

Thus, the Lebesgue constant governs the accuracy of polynomial interpolants.
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L26-S04Nodal sets

This raises the question: can we minimize Lebesgue constants?

Let Λn denote the Lebesgue constant for n` 1 points.

Λn and Λn`1 need not have common nodes.

For any triangular array of points, Λn
nÒ8
Ñ 8.

For equidistant nodes, Λn „ 2n. (This is bad!)

For “Chebyshev" nodes , Λn „ logn. (This is asymptotically optimal)

Chebyshev nodes xj (say on r´1, 1s) are equidistant nodes under the cosine map:

xj “ cos θj , θj “
2j ´ 1

2n` 2
π, j “ 1, . . . , n` 1.
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L26-S05Another error estimate

There are alternative strategies to computing error estimates for interpolation.

With x1, . . . , xn`1 the nodes, the nodal polynomial ωpxq is

ωpxq :“
n`1
ź

j“1

px´ xjq.

This can be used to construct an error estimate:

Theorem
Let x1, . . . , xn`1 be distinct nodes on ra, bs. Then

|fpxq ´ rInf spxq| “

ˇ

ˇ

ˇ
f pn`1q

pξq
ˇ

ˇ

ˇ

pn` 1q!
|ωpxq|,

where ξ “ ξpxq lies in ra, bs.
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