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Polynomial approximation

Fourier Series-type approximations are most useful when functions are periodic.

In the non-periodic case, perhaps the most popular alternative is polynomial
approximation.

MATH 6610-001 — U. Utah Polynomial approximation, |



: : : .25-S01
Polynomial approximation

Fourier Series-type approximations are most useful when functions are periodic.

In the non-periodic case, perhaps the most popular alternative is polynomial
approximation.

Like with Fourier Series, there is a “completeness" statement, ensuring that
polynomials have sufficient approximation capacity for continuous functions.

Theorem (Weierstrass)

Let f : [a,b] — R be continuous with b — a < c0. Then there exists a sequence of

polynomials {py}m_o, with degp, < n, such that

lim sup |f(z) —pn(z)| = 0.

ntoo z€[a,b]

This Weierstrass approximation result ensures that it's possible to construct
accurate approximating polynomials.
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Polynomial interpolation L25-502

How do we construct polynomial approximations? Interpolation is the simplest
strategy.

Given a continuous function f : [a,b] — IR, we seek an interpolant from the space
P, :=span{l,x,...,x"}

on the points {z1,...xp+1} < [a,b].
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Polynomial interpolation L25-502

How do we construct polynomial approximations? Interpolation is the simplest
strategy.

Given a continuous function f : [a,b] — IR, we seek an interpolant from the space
P, :=span{l,x,...,x"}
on the points {z1,...xp+1} < [a,b].

This results in a linear algebra problem: given p € P, then
p(CU) = Z ijja
§=0

for some cofficients ¢;. By enforcing equality on the interpolation grid:

p(xj) = f(z;), j=1,...,n+1,
we obtain a linear system for the coefficients ¢;:
-1 ) C
Ve=f, (V)je=x; ", Vﬂ{/f“’”’\

and f; = f(z;), ¢; = ¢;.
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Interpolation existence and uniqueness

Ve=f, (V)je = mg_l,
V is called a Vandermonde matrix.

Existence and uniqueness of the interpolation problem is equivalent to that of the
linear system.

Theorem (Interpolation unisolvence)

If the nodes {x1,...,xnt1} C [a,b] are all distinct, then given any continuous f,
there is a unique degree-n polynomial that interpolates f on these nodes.
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: : : .25-S03
Interpolation existence and uniqueness

Ve=f, (V)je = xe_l,
V is called a Vandermonde matrix.

Existence and uniqueness of the interpolation problem is equivalent to that of the
linear system.
Theorem (Interpolation unisolvence)

If the nodes {x1,...,xnt1} C [a,b] are all distinct, then given any continuous f,
there is a unique degree-n polynomial that interpolates f on these nodes.

There are (at least) two ways to prove this:
@ Show that det V' # 0.

e Explicitly construct an interpolant (non-linear-algebraic).
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