L25-S00

Polynomial approximation, I

MATH 6610 Lecture 25

November 11, 2020

Polynomial approximation, I

Polynomial approximation

Fourier Series-type approximations are most useful when functions are periodic.

In the non-periodic case, perhaps the most popular alternative is polynomial approximation.

Polynomial approximation

Fourier Series-type approximations are most useful when functions are periodic.

In the non-periodic case, perhaps the most popular alternative is polynomial approximation.

Like with Fourier Series, there is a "completeness" statement, ensuring that polynomials have sufficient approximation capacity for continuous functions.

Theorem (Weierstrass)

Let $f : [a, b] \to \mathbb{R}$ be continuous with $b - a < \infty$. Then there exists a sequence of polynomials $\{p_n\}_{n=0}^{\infty}$, with deg $p_n \leq n$, such that

$$\lim_{n \uparrow \infty} \sup_{x \in [a,b]} |f(x) - p_n(x)| = 0.$$

This Weierstrass approximation result ensures that it's possible to construct accurate approximating polynomials.

Polynomial interpolation

How do we construct polynomial approximations? Interpolation is the simplest strategy.

Given a continuous function $f:[a,b] \to \mathbb{R}$, we seek an interpolant from the space

$$P_{n} := \operatorname{span}\{1, x, \dots, x^{n}\}$$
on the points $\{x_{1}, \dots, x_{n+1}\} \subset [a, b]$.
Constraints. Jegrees of freedom
Generate $p \in P_{n}$ s.t. $p(x_{j}) = f(x'_{j}) \quad \forall j = 1, \dots, n+1$

$$p(x) = \sum_{k=0}^{n} C_{KH} \times k$$

$$p(x_{i}) = f(x_{j}) \implies \sum_{k=0}^{n} c_{k+1} \chi_{j}^{k} = f(x_{i}^{*})$$

$$\downarrow$$

$$linear condition on \{c_{k}\}$$

constraints ?

Polynomial interpolation

How do we construct polynomial approximations? Interpolation is the simplest strategy.

Given a continuous function $f:[a,b]\to \mathbb{R},$ we seek an interpolant from the space

$$P_n \coloneqq \operatorname{span}\{1, x, \dots, x^n\}$$

on the points $\{x_1, \ldots x_{n+1}\} \subset [a, b]$.

This results in a linear algebra problem: given $p \in P_n$, then

$$p(x) = \sum_{j=0}^{n} c_j x^j,$$

for some cofficients c_j . By enforcing equality on the interpolation grid:

$$p(x_j) = f(x_j),$$
 $j = 1, ..., n + 1,$

we obtain a linear system for the coefficients c_j :

$$Vc = f, \qquad (V)_{j,\ell} = x_j^{\ell-1}, \qquad | \leq (j,\ell) \leq (j,\ell)$$

and $f_j = f(x_j)$, $c_j = c_j$.

MATH 6610-001 – U. Utah

Interpolation existence and uniqueness

$$Vc = f,$$
 $(V)_{j,\ell} = x_j^{\ell-1},$

V is called a Vandermonde matrix.

Existence and uniqueness of the interpolation problem is equivalent to that of the linear system.

Theorem (Interpolation unisolvence)

If the nodes $\{x_1, \ldots, x_{n+1}\} \subset [a, b]$ are all distinct, then given any continuous f, there is a unique degree-n polynomial that interpolates f on these nodes.

(not true as written in more than I dimension)

Interpolation existence and uniqueness

$$Vc = f,$$
 $(V)_{j,\ell} = x_j^{\ell-1},$

V is called a Vandermonde matrix.

Existence and uniqueness of the interpolation problem is equivalent to that of the linear system.

Theorem (Interpolation unisolvence)

If the nodes $\{x_1, \ldots, x_{n+1}\} \subset [a, b]$ are all distinct, then given any continuous f, there is a unique degree-n polynomial that interpolates f on these nodes.

There are (at least) two ways to prove this:

- Show that $\det V \neq 0$.
- Explicitly construct an interpolant (non-linear-algebraic).

125 - S03

Proof: Uniqueness: assume
$$p, q$$
 are both
degree- n interpolants.
 $p(X_6) = q(X_5)$, $j = 1$. $n+1$
 $X_j \neq X_k \forall j \neq k$
 $\implies p(x) - g(x) \in P_n$
 $p-q$ has $n+1$ zeros $@$
 $X_1 - X_{n+1}$.
 $\implies Fund.$ theorem of algebra
implies $p-q \equiv 0$,
 $E_{XiB-tenee}$
(Strategy A) Show det $V \neq 0$,
 lby induction).
Lemma: If V_n is the nxn Vandermonde
matrix:

$$V_{n} \equiv \begin{pmatrix} 1 & \chi_{i} & \chi_{i}^{2} - \chi_{i}^{n-1} \\ 1 & \chi_{L} & 1 & \ddots \\ \vdots & \vdots & 1 & \ddots \\ 1 & \chi_{n} & \chi_{n}^{2} - \chi_{n}^{n-1} \end{pmatrix}$$
Then $= \det V_{n} \equiv \prod_{1 \leq j < k \leq n} (\chi_{k} - \chi_{j})$.

Proof of lemma: (induction)

 $n \equiv j : V_{i} \equiv (1)$, $\det V_{i} \equiv \prod_{1 \leq j < k \leq 1} (\chi_{k} - \chi_{j})$

 $= \prod$

 $\underline{n \equiv 2} = V_{2} = \begin{pmatrix} 1 & \chi_{i} \\ 1 & \chi_{2} \end{pmatrix}$, $\det V_{2} \equiv \chi_{2} - \chi_{1}$

 $= \prod_{1 \leq j < k \leq 2} (\chi_{n} - \chi_{j})$

inductive step: assume $\det V_{n} \equiv \prod (\chi_{k} - \chi_{j})$

 $\lim_{1 \leq j < k \leq 2} (1 - \chi_{1} - \chi_{n}^{n}) \lim_{1 \leq j < k \leq n} (\chi_{k} - \chi_{j})$

 $\det V_{at1} = \sum_{l=1}^{n+1} (-1) \chi_{n+1}^{l-1} M_{l}$ $Laplace exp
<math display="block"> along lass vow \qquad determinant mmor$ Me = Leteronivant of Vnm W/o row n+1 and column l. Note Me does not depend on Xn+1. $\mathcal{M}_{\ell} = \mathcal{M}_{\ell}(\chi_{\ell}, \chi_{n})$ => bet Vin, as a function of Xing, is an element of Pn. As a function of Zny, then det Vny: • has roots @ X=X,...Xn. (replacing Xn+i by X; makes row mil of Vn+1 identical to row j => det Van=0).

• leading coefficient of det Vun is det Vn.
det Vnti =
$$\sum_{l=1}^{n+1} (-1)^{n+l-1} \chi_{nti}^{l-1} M_{l}^{l}$$
.
= $(-1)^{2n} \chi_{nti}^{n} M_{nti} + (lower order
terms)$
= $\chi_{nti}^{n} M_{nti} + \cdots$
 $\int_{leterminist}^{n} determinist of Vnti with
row util, column n+1 removed
= $\chi_{nti}^{n} (det V_n) + \cdots$
 $det Vnti = C \cdot \prod_{l=1}^{n} (x_{nti} - x_l)$
= $(det V_n) \prod_{l=1}^{n} (x_{nti} - x_l)$
= $(\prod_{l \leq j \leq k \leq n} (x_k - x_j)) \prod_{l=1}^{n} (x_{nti} - x_l)$$

$$= \prod_{\substack{i \in j \in k \in N+1 \\ i \in j \in k \in N+1 \\ i \in j \in k \in N}} (X_{k} - X_{j}) \neq 0 \text{ if } X_{k} \neq X_{j}}$$

So: det $V_{n} = \prod_{\substack{i \in j \in k \in N \\ i \in j \in k \in N}} (X_{k} - X_{0}) \neq 0 \text{ if } X_{k} \neq X_{j}}$
 $\Rightarrow V_{c} = f \text{ has a (unique) solution.}$
Strategy B (existence)
Define $l_{j}(x) = \prod_{\substack{k \in l = N \\ k \neq j}} (\frac{x - X_{k}}{(X_{j} - X_{k})} \in P_{n-1})$
 $K_{e} \neq j$
 $(j = [--N)$
Note: $l_{j}(X_{k}) = \begin{cases} 0 & j \neq k \\ 1 & j = k \end{cases}$
 $l_{3} = 1$
 $X_{1} = X_{2} = X_{3}$

. .

Then:
$$\sum_{j=1}^{n} f(x_j) l_j(x) \in P_{n-1}$$

Satisfies $\sum_{j=1}^{n} f(x_j) l_j(x_k)$
 $= \sum_{j=1}^{n} f(x_j) \delta_{j,k} = f(x_k)$

The functions by (x) are called cardinal Lagrange functions.