Polynomial approximation, I

MATH 6610 Lecture 25

November 11, 2020

Polynomial approximation

Fourier Series-type approximations are most useful when functions are periodic.
In the non-periodic case, perhaps the most popular alternative is polynomial approximation.

Fourier Series-type approximations are most useful when functions are periodic.
In the non-periodic case, perhaps the most popular alternative is polynomial approximation.

Like with Fourier Series, there is a "completeness" statement, ensuring that polynomials have sufficient approximation capacity for continuous functions.

Theorem (Weierstrass)
Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous with $b-a<\infty$. Then there exists a sequence of polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$, with $\operatorname{deg} p_{n} \leqslant n$, such that

$$
\lim _{n \uparrow \infty} \sup _{x \in[a, b]}\left|f(x)-p_{n}(x)\right|=0 .
$$

This Weierstrass approximation result ensures that it's possible to construct accurate approximating polynomials.

Polynomial interpolation

How do we construct polynomial approximations? Interpolation is the simplest strategy.

Given a continuous function $f:[a, b] \rightarrow \mathbb{R}$, we seek an interpolant from the space

$$
P_{n}:=\operatorname{span}\left\{1, x, \ldots, x^{n}\right\}
$$

on the points $\left\{x_{1}, \ldots x_{n+1}\right\} \subset[a, b]$.

How do we construct polynomial approximations? Interpolation is the simplest strategy.

Given a continuous function $f:[a, b] \rightarrow \mathbb{R}$, we seek an interpolant from the space

$$
P_{n}:=\operatorname{span}\left\{1, x, \ldots, x^{n}\right\}
$$

on the points $\left\{x_{1}, \ldots x_{n+1}\right\} \subset[a, b]$.
This results in a linear algebra problem: given $p \in P_{n}$, then

$$
p(x)=\sum_{j=0}^{n} c_{j} x^{j}
$$

for some cofficients c_{j}. By enforcing equality on the interpolation grid:

$$
p\left(x_{j}\right)=f\left(x_{j}\right), \quad j=1, \ldots, n+1,
$$

we obtain a linear system for the coefficients c_{j} :

$$
V c=f, \quad(V)_{j, \ell}=x_{j}^{\ell-1}
$$

and $f_{j}=f\left(x_{j}\right), c_{j}=c_{j}$.

$$
V c=f, \quad(V)_{j, \ell}=x_{j}^{\ell-1},
$$

V is called a Vandermonde matrix.
Existence and uniqueness of the interpolation problem is equivalent to that of the linear system.

Theorem (Interpolation unisolvence)
If the nodes $\left\{x_{1}, \ldots, x_{n+1}\right\} \subset[a, b]$ are all distinct, then given any continuous f, there is a unique degree-n polynomial that interpolates f on these nodes.

$$
V c=f, \quad(V)_{j, \ell}=x_{j}^{\ell-1},
$$

V is called a Vandermonde matrix.
Existence and uniqueness of the interpolation problem is equivalent to that of the linear system.

Theorem (Interpolation unisolvence)
If the nodes $\left\{x_{1}, \ldots, x_{n+1}\right\} \subset[a, b]$ are all distinct, then given any continuous f, there is a unique degree-n polynomial that interpolates f on these nodes.
There are (at least) two ways to prove this:

- Show that $\operatorname{det} V \neq 0$.
- Explicitly construct an interpolant (non-linear-algebraic).

