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(Applied) Approximation theory L.24-S01

The last batch of material in this class regards approximation theory and methods:

How can we represent (generally infinite-dimensional) functions with finite data on
a computer?
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(Applied) Approximation theory L.24-S01

The last batch of material in this class regards approximation theory and methods:

How can we represent (generally infinite-dimensional) functions with finite data on
a computer?

We'll investigate three geeneral strategies for approximation:
@ Fourier approximation
° polypmial approximation (w% V‘L e ‘hhw)
e rational approximation

For simplicity, we'll consider only scalar-valued functions of one variable.
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Major questions L24-502

We'll be concerned with the following questions:

@ When are infinite-dimensional functions efficiently representable in
finite-dimensional spaces?

@ Are (near-)optimal finite-dimensional representations computable?

@ In 6620: using approximation techniques to solve differential equations
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Major questions L24-502

We'll be concerned with the following questions:

@ When are infinite-dimensional functions efficiently representable in
finite-dimensional spaces?

@ Are (near-)optimal finite-dimensional representations computable?
@ In 6620: using approximation techniques to solve differential equations

With Fourier approximation today, we'll address the first problem with the following
theme:

Smoothness = Compressibility
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L. 24-503

(ot Sealos~calud unchone )

L2 = L*([0,27];C) = {f : [0,27] - C | |f] <0},

Fourier Series

We'll consider functions in a Hilbert space:

metrized with the norm,
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Fourier Series L.24-S03

We'll consider functions in a Hilbert space:
L* = L2([0,27ib;@) ={f:[0,2n] = C | |f] <o},

metrized with the norm,

27

= L
[ £ = 1o = <F5 0 {frgp=| [flx)g(z)*dx

0

ik — L? is complete in L?.

Fact: the set of functions {e }keZ

Theorem (L? completeness of Fourier Series)
For any f € L?, there exists a sequence { fk} < C such that

keZ [*Lz n()m

lim | f — ) Fee®| = 0.

o0
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. . L24-S04
Fourier projections, |

The coefficient sequence fr even has an explicit formula.

By defining an orthonormal basis,

1 .
12 Ou(x) = =™, KeZ
ver @ @7 4,

then the fk coefficients are defined by a |mear—a|gebra|c like prOJectlon

fx 3:<fa¢k>-: = go -”%)e-)kxdx
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Fourier projections, |l L24-505

Furthermore, these coefficients define an optimal approximation.

Theorem
Given f € L?, the optimal trigonometric polynomial f, of frequency at most n is

given by:
fn = argmin| f —g|, ful@) = . frou(a)

where Vi, := span {dx} 1<, ?k? < 'C) @k >

In fact, the map f — f, is a linear orthogonal projection.
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Fourier projections, |l L24-505

Furthermore, these coefficients define an optimal approximation.

Theorem
Given f € L?, the optimal trigonometric polynomial f, of frequency at most n is
given by:
fn = argmin | f — g, fa(z) = ). feon(),
9€Vn k|<n

where Vi, := span {dx} 1<, EKZ <‘pl @[{/7

In fact, the map f — f, is a linear orthogonal projection.

A related fact is Parseval’s identity:
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Efficiency of Fourier representations

Given f € L?, the (2n + 1)-term approximation,

fa(@) = D fuor(z), Fr = <frbm),

|k|<n

is an optimal approximation, and converges to f as n 1 o0.

How quickly does this converge?
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Smoothness L24-507

Smoothness plays a central role in classical optimal approximation results:
The smoother the function f, the faster that f,, converges to f.
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Smoothness L24-507

Smoothness plays a central role in classical optimal approximation results:

The smoother the function f, the faster that f,, converges to f. rgh &fi\/ﬁ){ﬁ/ﬂ

One standard measure of smoothness: membership in a_$obolev space. (91& ﬁ

friven SeSo |2

H* = I ([0,27];C) =={f : [0,27] > C | Hfm <wforr=01,...,s

L2

and f(r)(O) = f(r)(27r) forr=0,1,...,s — 1},
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metrized with the norm || f||3,. == >1°_, Hf(r)
L

MATH 6610-001 — U. Utah Fourier Series



Smoothness L24-507

Smoothness plays a central role in classical optimal approximation results:
The smoother the function f, the faster that f,, converges to f.

One standard measure of smoothness: membership in a Sobolev space.

<o forr=0,1,...,s
L2

and f(r)(O) = fM@n) forr=0,1,...,s — 1},

H* == H} ([0,27); ©) ={f : [0,27] > © | |7

2
metrized with the norm || f||3,. == >1°_, Hf(r) -
L

The rate of convergence of Fourier approximations depends on the smoothness

parameter s. > z ) (X)
k1t kK

Theorem ]

Assume f € H® for some s = 0. Then the (2n + 1)-term approximation f,, commits

the error /
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