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L24-S01(Applied) Approximation theory

The last batch of material in this class regards approximation theory and methods:

How can we represent (generally infinite-dimensional) functions with finite data on
a computer?

We’ll investigate three geeneral strategies for approximation:
Fourier approximation
polyomial approximation
rational approximation

For simplicity, we’ll consider only scalar-valued functions of one variable.
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L24-S02Major questions

We’ll be concerned with the following questions:
When are infinite-dimensional functions efficiently representable in
finite-dimensional spaces?
Are (near-)optimal finite-dimensional representations computable?
In 6620: using approximation techniques to solve differential equations

With Fourier approximation today, we’ll address the first problem with the following
theme:

Smoothness ùñ Compressibility
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L24-S03Fourier Series

We’ll consider functions in a Hilbert space:

L
2 “ L

2pr0, 2⇡q; q “  
f : r0, 2⇡s Ñ

ˇ̌
}f} † 8(

,

metrized with the norm,

}f} :“ }f}
L2 “ xf, fy , xf, gy :“

ª 2⇡

0

fpxqgpxq˚dx

Fact: the set of functions
 
e
ikx

(
kP Ä L

2 is complete in L
2.

Theorem (L2 completeness of Fourier Series)
For any f P L

2, there exists a sequence
!

pfk
)

kP
Ä such that

lim
nÒ8

››››››
f ´

ÿ

|k|§n

pfkeikx
››››››

“ 0.
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L24-S04Fourier projections, I

The coefficient sequence pfk even has an explicit formula.

By defining an orthonormal basis,

�kpxq :“ 1?
2⇡

e
ikx

,

then the pfk coefficients are defined by a linear-algebraic-like projection:

pfk :“ xf,�ky .
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L24-S05Fourier projections, II

Furthermore, these coefficients define an optimal approximation.

Theorem
Given f P L

2, the optimal trigonometric polynomial fn of frequency at most n is
given by:

fn :“ argmin
gPVn

}f ´ g} , fnpxq “
ÿ

|k|§n

pfk�kpxq,

where Vn :“ span t�ku|k|§n
.

In fact, the map f fiÑ fn is a linear orthogonal projection.

A related fact is Parseval’s identity:

}f}2 “
ÿ

kP

ˇ̌
ˇ pfk

ˇ̌
ˇ
2
.

MATH 6610-001 – U. Utah Fourier Series





L24-S05Fourier projections, II

Furthermore, these coefficients define an optimal approximation.

Theorem
Given f P L

2, the optimal trigonometric polynomial fn of frequency at most n is
given by:

fn :“ argmin
gPVn

}f ´ g} , fnpxq “
ÿ

|k|§n

pfk�kpxq,

where Vn :“ span t�ku|k|§n
.

In fact, the map f fiÑ fn is a linear orthogonal projection.

A related fact is Parseval’s identity:

}f}2 “
ÿ

kP

ˇ̌
ˇ pfk

ˇ̌
ˇ
2
.

MATH 6610-001 – U. Utah Fourier Series



L24-S06Efficiency of Fourier representations

Given f P L
2, the p2n ` 1q-term approximation,

fnpxq “
ÿ

|k|§n

pfk�kpxq, pfk :“ xf,�ky ,

is an optimal approximation, and converges to f as n Ò 8.

How quickly does this converge?
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L24-S07Smoothness

Smoothness plays a central role in classical optimal approximation results:
The smoother the function f , the faster that fn converges to f .

One standard measure of smoothness: membership in a Sobolev space.

H
s :“ H

s

p pr0, 2⇡s; q :“ 
f : r0, 2⇡s Ñ

ˇ̌ ›››f prq
›››
L2

† 8 for r “ 0, 1, . . . , s

and f
prqp0q “ f

prqp2⇡q for r “ 0, 1, . . . , s ´ 1
(
,

metrized with the norm }f}2
Hs :“ ∞

s

r“0

›››f prq
›››
2

L2
.

The rate of convergence of Fourier approximations depends on the smoothness
parameter s.

Theorem
Assume f P H

s for some s • 0. Then the p2n ` 1q-term approximation fn commits
the error

}f ´ fn}
L2 § n

´s }f}
Hs .
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