Iterative methods for nonlinear equations

MATH 6610 Lecture 23

November 6, 2020

Nonlinear equations

Given $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ a general nonlinear function, consider solving for x :

$$
f(x)=0 .
$$

This problem is in general both theoretically and computationally difficult.

- Existence and uniqueness can be difficult to establish
- Iterative algorithms are the typical strategy
- Algorithm success varies wildly depending on the initial iterate

Nonlinear equations

Given $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ a general nonlinear function, consider solving for x :

$$
f(x)=0 .
$$

This problem is in general both theoretically and computationally difficult.

- Existence and uniqueness can be difficult to establish
- Iterative algorithms are the typical strategy
- Algorithm success varies wildly depending on the initial iterate

Even with $n=1$ this is a relatively difficult problem.
There are some standard algorithms for addressing this problem.
We'll only look at a few, but there are numerous methods.

Linearizations

In some cases nonlinear equations can be linearized, which informally means that solutions to the nonlinear equation

$$
f(x)=0,
$$

can be expressed with linear objects and operators.

Linearizations

In some cases nonlinear equations can be linearized, which informally means that solutions to the nonlinear equation

$$
f(x)=0,
$$

can be expressed with linear objects and operators.
A well-known example of linearizations is finding roots of a polynomial:

$$
f(x):=x^{m}+\sum_{j=0}^{m-1} a_{j} x^{j}=0 .
$$

This is a nonlinear equation for any $m>1$.

Companion matrices

$$
f(x):=x^{m}+\sum_{j=0}^{m-1} a_{j} x^{j}=0
$$

Define $C \in \mathbb{C}^{m \times m}$ by

$$
C=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{m-1}
\end{array}\right)
$$

This matrix C is a companion matrix.

Companion matrix linearizations

A computation shows that if $x \in \mathbb{C}$ is a(ny) root of f, then

$$
v=\left(\begin{array}{c}
1 \\
x \\
x^{2} \\
\vdots \\
x^{m-1}
\end{array}\right)
$$

is an eigenvector of C with eigenvalue x.
In other words, the spectrum of C are exactly the set of points that solve $f(x)=0$.

Companion matrix linearizations

A computation shows that if $x \in \mathbb{C}$ is a(ny) root of f, then

$$
v=\left(\begin{array}{c}
1 \\
x \\
x^{2} \\
\vdots \\
x^{m-1}
\end{array}\right)
$$

is an eigenvector of C with eigenvalue x.
In other words, the spectrum of C are exactly the set of points that solve $f(x)=0$.

$$
f(x):=x^{m}+\sum_{j=0}^{m-1} a_{j} x^{j}=0 \quad \Leftrightarrow \quad x \in \Lambda(C) .
$$

While this provides a way to compute roots via eigenvalue problems, often C is ill-conditioned.
In particular, C is not a normal matrix, so the eigenvalue problem is often poorly conditioned.

Bisection

$$
f(x)=0 \quad(n=1)
$$

Perhaps the simplest procedure is bisection: assume f is continuous, and that we have two values x_{L} and x_{R} such that

$$
x_{L}<x_{R}, \quad f\left(x_{L}\right) f\left(x_{R}\right)<0,
$$

i.e., $f\left(x_{L}\right)$ and $f\left(x_{R}\right)$ have different signs.

Bisection

$$
f(x)=0 \quad(n=1)
$$

Perhaps the simplest procedure is bisection: assume f is continuous, and that we have two values x_{L} and x_{R} such that

$$
x_{L}<x_{R}, \quad f\left(x_{L}\right) f\left(x_{R}\right)<0,
$$

i.e., $f\left(x_{L}\right)$ and $f\left(x_{R}\right)$ have different signs.

In this situation, there must be some solution $x^{*} \in\left(x_{L}, x_{R}\right)$ (Intermediate Value Theorem).

The bisection algorithm zeros in on one such solution by creating a smaller and samller bracketing interval:

1. Define $x_{M}:=\frac{1}{2}\left(x_{L}+x_{R}\right)$, and compute $f\left(x_{M}\right)$.
2. If $f\left(x_{M}\right) f\left(x_{L}\right)<0$: set $x_{R} \leftarrow x_{M}$ and return to step 1 .
3. If $f\left(x_{M}\right) f\left(x_{R}\right)<0$: set $x_{L} \leftarrow x_{M}$ and return to step 1 .
4. If $f\left(x_{M}\right)=0$: then $x^{*}=x_{M}$.

Fixed point iteration, I

$$
f(x)=0
$$

Fixed point iteration is an alternative, simple strategy that rewrites the equation above as

$$
x=g(x),
$$

where, for example, $g(x)=x-f(x)$.

$$
f(x)=0
$$

Fixed point iteration is an alternative, simple strategy that rewrites the equation above as

$$
x=g(x),
$$

where, for example, $g(x)=x-f(x)$.
Under certain assumptions, the Banach fixed point theorem

- guarantees a unique solution to $x=g(x)$,
- that the solution is the limit of the sequence $\left\{x_{n}\right\}$ defined by

$$
x_{n}:=g\left(x_{n-1}\right) .
$$

Fixed point iteration, I

$$
x=g(x)
$$

In order to leverage the Banach fixed point theorem results, g must be a contraction:

- There is some region $D \subseteq \mathbb{R}^{n}$ such that $g: D \rightarrow D$.
- There is some $\lambda \in[0,1)$ such that g satisfies $\|g(x)-g(y)\| \leqslant \lambda\|x-y\|$ for every $x, y \in D$.

$$
x=g(x)
$$

In order to leverage the Banach fixed point theorem results, g must be a contraction:

- There is some region $D \subseteq \mathbb{R}^{n}$ such that $g: D \rightarrow D$.
- There is some $\lambda \in[0,1)$ such that g satisfies $\|g(x)-g(y)\| \leqslant \lambda\|x-y\|$ for every $x, y \in D$.
Note that the contraction property is satisfied if, for example,

$$
\sup _{x \in D}\left\|\frac{\mathrm{~d} g}{\mathrm{~d} x}\right\|<1
$$

where $\frac{\mathrm{d} g}{\mathrm{~d} x}$ is the Jacobian of g.

$$
x=g(x)
$$

In order to leverage the Banach fixed point theorem results, g must be a contraction:

- There is some region $D \subseteq \mathbb{R}^{n}$ such that $g: D \rightarrow D$.
- There is some $\lambda \in[0,1)$ such that g satisfies $\|g(x)-g(y)\| \leqslant \lambda\|x-y\|$ for every $x, y \in D$.
Note that the contraction property is satisfied if, for example,

$$
\sup _{x \in D}\left\|\frac{\mathrm{~d} g}{\mathrm{~d} x}\right\|<1,
$$

where $\frac{\mathrm{d} g}{\mathrm{~d} x}$ is the Jacobian of g.
Several methods for solving nonlinear equations are variants of fixed point iteration which, given f, make special choices for g to ensure the contraction property.

Newton's Method ($n=1$)

Newton's Method solves

$$
f(x)=0 \quad(n=1)
$$

by casting the problem as the following fixed point iteration:

$$
x=g(x):=x-\frac{f(x)}{f^{\prime}(x)}
$$

Note that any solution to $x=g(x)$ also satisfies $f(x)=0$.

Newton's Method ($n=1$)
Newton's Method solves

$$
f(x)=0 \quad(n=1)
$$

by casting the problem as the following fixed point iteration:

$$
x=g(x):=x-\frac{f(x)}{f^{\prime}(x)}
$$

Note that any solution to $x=g(x)$ also satisfies $f(x)=0$.
Newton's method applies fixed point iteration:

$$
x_{n}:=g\left(x_{n-1}\right)=x_{n-1}-\frac{f\left(x_{n-1}\right)}{f^{\prime}\left(x_{n-1}\right)},
$$

where x_{0} must be chosen.

Effectiveness of Newton's Method

Newton's Method, under certain assumptions, attains quadratic convergence, i.e.,

$$
\left|x-x_{n}\right| \leqslant C\left|x-x_{n-1}\right|^{2},
$$

where x is a root of $f(x)$, and C satisfies $C\left|x-x_{0}\right|<1$.

Effectiveness of Newton's Method

Newton's Method, under certain assumptions, attains quadratic convergence, i.e.,

$$
\left|x-x_{n}\right| \leqslant C\left|x-x_{n-1}\right|^{2},
$$

where x is a root of $f(x)$, and C satisfies $C\left|x-x_{0}\right|<1$.
Failure of Newton's Method often results from a poor choice of x_{0}, or from f not satisfying technical conditions that would ensure success of the method.

However, if x_{0} is "close enough" to x, then Newton's methods often performs extremely well.

Effectiveness of Newton's Method

Newton's Method, under certain assumptions, attains quadratic convergence, i.e.,

$$
\left|x-x_{n}\right| \leqslant C\left|x-x_{n-1}\right|^{2},
$$

where x is a root of $f(x)$, and C satisfies $C\left|x-x_{0}\right|<1$.
Failure of Newton's Method often results from a poor choice of x_{0}, or from f not satisfying technical conditions that would ensure success of the method.

However, if x_{0} is "close enough" to x, then Newton's methods often performs extremely well.

Some methods combine slower and less sophisticated methods, like bisection, to first obtain a guess that is "close" to x.

Subsequently, a faster method, like Newton's Method, is used to converge quickly to the solution.

Newton's Method ($n>1$)

$$
f(x)=0 \quad(n>1)
$$

A multivariate form of Newton's Method looks similar to the one-dimensional case:

$$
x=g(x):=x-\left(\frac{\mathrm{d} f}{\mathrm{~d} x}\right)^{-1} f(x)
$$

and the iterates are defined as $x_{n}=g\left(x_{n-1}\right)$.
Note in particular that this requires inversion of a (potentially large) matrix at every step.

