
L22-S00

Iterative methods (for linear systems)

MATH 6610 Lecture 22

November 4, 2020

Trefethen & Bau: Lectures 32, 35, 38

MATH 6610-001 – U. Utah Iterative methods



L22-S01Direct methods
We have previously discssed direct methods, i.e., methods that

orthogonalize vectors
solve linear systems
compute eigenvalues

assuming that operations like x ÞÑ Ax are efficiently computable.

For very large matrices, e.g., A P C106ˆ106 , such procedures are not practical.

For such large matrices of general type, there is not much that can be done.

But in practice, matrices are sparse, having a reasonably small percentage of
nonzero entries.
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L22-S02Direct methods and sparse matrices

Sparse matrices arise frequently in applications.

This is fortunate since fundamental operations like x ÞÑ Ax are very efficient
for sparse matrices.

Unfortunately, direct methods operating on sparse matrix frequently result in
dense matrices:

QR factorizations
LU factorizations
Eigenvalue algorithms

Even just storing such matrices can be impossible in practice.
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L22-S03Iterative methods
In contrast to direct methods, iterative methods produce answers that
gradually approach the solution, performing only operations that generally
don’t require large dense matrices.

There are two major problems that iterative methods generally seek to solve:
Solve linear systems
Compute eigenvalues/eigenvectors

We’ll briefly discuss the general ideas for the first class of problems.
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L22-S04Themes of iterative methods

Ax “ b

Many iterative methods focus on ensuring the following properties
A sequence of solution approximations, x0, x1, x2, . . . is constructed,
with a new approximation formed at every iteration.
The update xk ÞÑ xk`1 typically involves only efficient matrix-vector
multiplications (e.g., exploiting sparsity)
The sequence txku gradually approaches the solution as k Ò 8.
Termination is frequently judged by inspecting the residual }Axk ´ b}.
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L22-S05Stationary iterative methods

Ax “ b

Stationary iterative methods (also “relaxation methods") are among the first
types of iterative methods developed.

The basic idea of stationary iterative methods is as follows: we update
solutions linearly:

Bxk`1 “ Cxk ` d,

where B and C are matrices, and d is a vector.

In order to prove
convergence, we attempt to choose B, C, and d so that

ek`1 “ Fek, ek :“ xk ´ x

We can ensure this relation if we make the choice,

B ´ C “ A, d “ b.
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L22-S06Stationary iterative methods and convergence

ek`1 “ Fek, ek :“ xk ´ x

With the above relation, then we obtain convergence if

lim
kÑ8

F k “ 0.

Ensuring this condition typically depends on the matrix A and on what kind
of decomposition A “ B ´ C is chosen.
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L22-S07Some choices

Bxk`1 “ Cxk ` b, A “ B ´ C.

Suppose that A “ L`D ` U where
L and U are the lower- and upper-triangular portions of A, respectively,
D is the diagonal portion of A.

Many methods boil down to how B and C are chosen:

Jacobi method: B “ D, C “ ´L´ U .
Gauss-Seidel method: B “ D ` L, C “ ´U .
Successive over-relaxation method: B “ D ` αL, C “ p1´ αqD ´ αU .

These methods have strong theory when applied to discretizations of
Laplace’s equation.
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L22-S08Krylov subspace methods

Krylov subspace methods are a general class of iterative methods.

Krylov subspace methods build approximations from the subspace,

span
 

b, Ab,A2b, . . . , Ar´1b
(

,

where r is either adaptively or a priori specified.

The vector b is either the right-hand side of a linear system, or an initial
guess for an eigenvector.

Of course there are some implementation details:
Neither Ak nor Akb are ever explicitly computed.
Some orthogonalization is typically performed to avoid ill-conditioning.
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L22-S09Some Krylov subspace methods

Krylov subspace methods are among the most popular and effective iterative
methods.

For solving linear systems, examples are
Conjugate Gradient (CG) and variants (CGStab, BiCGStab, etc.)
Generalized minimum residuals (GMRES) and variants (MINRES, QMR,
etc.)

For computing eigenvalues some iterative methods are
Lanczos iteration (for Hermitian A)
Arnoldi iteration (for general A)
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L22-S10Preconditioning

Ax “ b

The conditioning of solving systems depends on the condition number of A.

Preconditioning is a technique where an “easily invertible” matrix P is
inserted in hopes of making the equation more well-conditioning:

P´1Ax “ P´1b, AP´1pPxq “ b.

Typically, P is chosen as an “approximate” inverse of A, such as its diagonal.

Effective preconditioning serves both to stabilize numerical computations,
and to accelerate iterative methods (result in fewer iterations).
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