Classes reek of Nov. 2 (Nan 2,4,6)

- cancel Mon. Nov. 2
- we went really hare lecture on Nov. 4,6.
- I'll prepare slides for content
+ iterative methods
+ nonlinear equations/Optimization (B)
- Bur I wort deliver a lecture on Wed, Fri.
- Instead, I'll ask that If you decide to come to lecture, then review slides beforehand and well hare an informal discussion.
- You are not is required x attend lecture on Now, 4, 6 .
$-(A+B)$ are not on quals / final exam/*tw.

Eigenvalue algorithms: The QR algorithm with shifts

$$
\text { MATH } 6610 \text { Lecture } 2021
$$

October 26, 2020

Trefethen \& Bau: Lecture 29

The QR algorithm
Assume A is Hermitian. The QR algorithm for computing eigenvalues:

1. Compute $A=Q R$, the QR decomposition of A
2. Replace A by the procedure $A \leftarrow R Q$
3. Return to step 1

We've seen that this is just simultaneous power iteration.

$$
\begin{array}{ll}
\text { Set } A_{0}^{Q R=A}=V \Lambda V^{*} & \text { 1.) }) A_{k-1}^{Q R} \rightarrow A_{k}^{Q R} \\
\text { is unitary similarity } \\
\text { a transform. }
\end{array}
$$

Note: computationally, $A_{k-1}^{Q R} \mapsto A_{k}^{Q R}$ can be very efficient.
$A_{k-1}^{Q R} \longrightarrow R_{k}^{Q R}$ performs a sequence of Householder reflections.

$$
\begin{aligned}
& R_{k}^{Q R}=\underbrace{\left(\prod_{j=1}^{n} H_{j}\right)}_{\left(Q_{k}^{Q R}\right)^{*}} A_{k-1}^{Q R} \\
& A_{k}^{Q R}=R_{k}^{Q R} Q_{k}^{Q R}=\left(\prod_{j=1}^{n} H_{j}\right) A_{k-1}^{Q R}\left(\prod_{j=1}^{n} H_{j}\right)^{*} \\
& =H_{1} H_{2} \cdots \underbrace{H_{n} A_{k-1}^{C N}} H_{n}^{z} H_{n-1}^{8} \cdots H_{1}^{*}
\end{aligned}
$$

symmetric application of a Householder reflector (efficient!)

The QR algorithm

Assume A is Hermitian. The QR algorithm for computing eigenvalues:

1. Compute $A=Q R$, the QR decomposition of A
2. Replace A by the procedure $A \leftarrow R Q$
3. Return to step 1

We've seen that this is just simultaneous power iteration.
....which also means that it converges as "quickly" as power iteration.
Can we instead develop a Rayleigh iteration type of algorithm?

QR algorithm and inverse iteration, I
(Unshifted) inverse iteration: power iteration on A^{-1}.
The QR algorithm performs power iteration.

QR algorithm and inverse iteration, I
(Unshifted) inverse iteration: power iteration on A^{-1}.
The QR algorithm performs power iteration.
The QR algorithm also performs unshifted inverse iteration.

QR algorithm and inverse iteration, I
(Unshifted) inverse iteration: power iteration on A^{-1}.
The QR algorithm performs power iteration.
The QR algorithm also performs unshifted inverse iteration.

from the QR algorithm

Recall: if $Q_{k}^{Q R}$ is the QR factor computed at the k th iteration, then

$$
A^{k}=Q_{k} R_{k}, \quad Q_{k}=Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}
$$

and R_{k} is an upper-triangular matrix.

QR algorithm and inverse iteration, II
Let F be a permutation matrix that flips a vector, ie., associated to the permutation map:

$$
\{1,2, \ldots, n-1, n\} \longrightarrow\{n, n-1, \ldots, 2,1\} .
$$

Then:

$$
\begin{aligned}
A^{-k} F & =\left(A^{k}\right)^{-1} F \\
& =\left(Q_{k} R_{k}\right)^{-1} F \\
& \left.=R_{k}^{-1} Q_{k}^{*} F \quad \text { (A Hermition } \Rightarrow\left(A^{-k}\right)=\left(A^{-k}\right)^{*}\right) \\
& =\left(R_{k}^{-1} Q_{k}^{*}\right)^{*} F
\end{aligned}
$$

$$
\begin{aligned}
& =Q_{k} R_{k}^{-*} F \\
A^{-k} F & =Q_{k} F F R_{k}^{*} F
\end{aligned}
$$

simultaneous unitary R_{k} :upper triangular
inverse
iteration on
Starting matrix
F.
R_{k}^{*} : lower triangular
R_{k}^{-z} : lower triangular
$F R_{k}^{-} F$: upper triangular mater
\Rightarrow RHS is a QR decomposition of LHS.
Q factor $Q_{k} F$
$\Rightarrow Q_{k} F$ is approximately an eigenvector matrix for $X^{K} . A^{-1}$.
Since A is Hermition, then $Q_{k} F$ is also an eigenvector matrix for A.
Q_{k}-computed limphizily via QR algorithm)
$Q_{k} F$: first column of this is a good guess to a dominant eigenvector of A^{-1}
\Rightarrow last column of Q_{k} is a good estimate to an eigenvector of A. Q_{R} is computed via QR algorithm!
\Rightarrow QR algorithm forms inverse iteration. (as well as power iteration!)

QR algorithm and inverse iteration, II

Let F be a permutation matrix that flips a vector, i.e., associated to the permutation map:

$$
\{1,2, \ldots, n-1, n\} \longrightarrow\{n, n-1, \ldots, 2,1\} .
$$

Then:

$$
A^{-k} F=\left(Q_{k} F\right)\left(F R_{k}^{-T} F\right),
$$

which is a $Q R$ factorization of $A^{-k} F$.
I.e., the last column(s) of Q^{K} (computed via the QR algorithm) are inverse iteration with starting vectors given by the first columns of F.

The QR algorithm with shifts

We can almost perform Rayleigh iteration with QR procedures. We can perform inverse iteration; how to accomplish shifting?

The QR algorithm with shifts
We can almost perform Rayleigh iteration with QR procedures. We can perform inverse iteration; how to accomplish shifting?

Before explaining the shift, we show the result:
The QR algorithm with shifts.
(or arbitrary)
Set $A_{0}^{Q R}=A$ and $\mu_{0}=0$. For $k=1,2, \ldots$,

- $Q_{k}^{Q R} R_{k}^{Q R}=A_{k-1}^{Q R}-\mu_{k-1} I \quad$ CQR decomp. of a shifted version
- $A_{k}^{Q R}=R_{k}^{Q R} Q_{k}^{Q R}+\mu_{k-1} I$ of $A_{k-1}(Q R$
- "Choose" μ_{k}

Recall from Rayleigh iterates: chosen via Rayleigh quotient.

The QR algorithm with shifts

We can almost perform Rayleigh iteration with QR procedures. We can perform inverse iteration; how to accomplish shifting?

Before explaining the shift, we show the result:
The QR algorithm with shifts.
Set $A_{0}^{Q R}=A$ and $\mu_{0}=0$. For $k=1,2, \ldots$,

- $Q_{k}^{Q R} R_{k}^{Q R}=A_{k-1}^{Q R}-\mu_{k-1} I$
- $A_{k}^{Q R}=R_{k}^{Q R} Q_{k}^{Q R}+\mu_{k-1} I$
- "Choose" μ_{k}

For quite a time, the QR algorithm with (properly chosen) shifts was the gold standard for computing eigenvalues.
(Not quite so widely used today, though.)

QR with shifts is shifted inverse iteration

We can see why the QR algorithm with shifts is shifted inverse iteration:

QR with shifts is shifted inverse iteration
We can see why the $Q R$ algorithm with shifts is shifted inverse iteration:

$$
A_{k}^{Q R}=\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)^{*} \quad A \quad\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)
$$

so that this algorithm still produces a matrix unitarily equivalent to A.
Again, $A_{k}^{Q R}$ is unitarily equivalent to A.
Idea:

$$
\begin{aligned}
& Q_{k}^{Q R} R_{k}^{Q R}=A_{k-1}^{Q R}-\mu_{k-1} I \\
& A_{k}^{Q R}=R_{k}^{Q R} Q_{k}^{Q R}+\mu_{k-1} I
\end{aligned}
$$

$$
\begin{aligned}
A_{k}^{Q R} & =\left(Q_{k}^{Q R}\right)^{*} Q_{k}^{Q R} R_{k}^{Q R} Q_{k}^{Q R}+\mu_{k-1} I \\
& =\left(Q_{k}^{Q R}\right)^{*}\left[A_{k-1}^{Q R}-\mu_{k-1} I\right] Q_{k}^{Q R}+\mu_{k-1} I \\
& =\left(Q_{k}^{Q R}\right)^{*} A_{k-1}^{Q R} Q_{k}^{Q R}
\end{aligned}
$$

Induction yields result.
the

QR with shifts is shifted inverse iteration

We can see why the QR algorithm with shifts is shifted inverse iteration:

$$
A_{k}^{Q R}=\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)^{*} \quad A \quad\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)
$$

so that this algorithm still produces a matrix unitarily equivalent to A.
The second critical property is that

$$
\begin{aligned}
\left(A-\mu_{0} I\right) & \left(A-\mu_{1} I\right) \cdots\left(A-\mu_{k-1} I\right)= \\
& \left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)\left(R_{k}^{Q R} R_{k-1}^{Q R} \cdots R_{1}^{Q R}\right) .
\end{aligned}
$$

QR with shifts is shifted inverse iteration

We can see why the QR algorithm with shifts is shifted inverse iteration:

$$
A_{k}^{Q R}=\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)^{*} \quad A \quad\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)
$$

so that this algorithm still produces a matrix unitarily equivalent to A.
The second critical property is that

$$
\begin{aligned}
& \left(A-\mu_{0} I\right)\left(A-\mu_{1} I\right) \cdots\left(A-\mu_{k-1} I\right)= \\
& \quad\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)\left(R_{k}^{Q R} R_{k-1}^{Q R} \cdots R_{1}^{Q R}\right) .
\end{aligned}
$$

I.e., the QR algorithm with shifts computes a QR decomposition for a type of shifted simultaneous iteration.

- The first column of $\prod_{j=1}^{k} Q_{k}^{Q R}$ is "shifted" power iteration, on e_{1}.
- The last column of $\prod_{j=1}^{k} Q_{k}^{Q R}$ is shifted inverse iteration, on e_{n}.

If the shifts are chosen well: the last column of $\prod_{j=1}^{k} Q_{k}^{Q R}$ is an eigenvector of A.

QR with shifts

$$
A_{k}^{Q R}=\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)^{*} \quad A \quad\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)
$$

and the last column of $\prod_{j=1}^{k} Q_{k}^{Q R}$ is an eigenvector.

QR with shifts

$$
A_{k}^{Q R}=\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)^{*} \quad A \quad\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)
$$

and the last column of $\prod_{j=1}^{k} Q_{Z_{j}}^{Q R}$ is an eigenvector.
This implies that the last, (n, n) entry of $A_{k}^{Q R}$ for large k, is an eigenvalue of A.

$$
\widetilde{V}=\prod_{j=1}^{k} Q_{j}^{Q R} \quad \widetilde{V}=\left[\begin{array}{cc}
\frac{1}{v_{1}} & -\frac{1}{u_{n}} \\
1 & 1
\end{array}\right]
$$

\widetilde{V}_{n} is an eigenvector of $A,\left\|\tilde{v}_{n}\right\|_{2}=1$

$$
\begin{aligned}
A_{k}^{Q R}=(\tilde{V})^{*} A \widetilde{V} & =\left(\left\langle A \widetilde{v}_{j}, \tilde{v}_{k}\right\rangle\right)_{\tilde{j}_{1 k}, 1}^{n} \\
A_{v_{n}} & =\lambda \widetilde{v}_{n} \\
\text { last row of } A_{k}^{Q R} & =\left\langle A \tilde{v}_{n}, \tilde{v}_{k}\right\rangle, k=1 \ldots n \\
& =\lambda\left\langle v_{n}, \tilde{v}_{k}\right\rangle, k=1 \ldots n \\
& =\delta_{n, k} \lambda \quad\left(\tilde{v}_{k} \text { are orthogonal }\right) \\
A_{k}^{\text {an }}=\left(\sum_{0 \cdots 0 \lambda}\right) & \Rightarrow\left(A_{k}^{0 R}\right)_{n, n}=\lambda
\end{aligned}
$$

$$
A_{k}^{Q R}=\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)^{*} A\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)
$$

and the last column of $\prod_{j=1}^{k} Q_{k}^{Q R}$ is an eigenvector.
This implies that the last, (n, n) entry of $A_{k}^{Q R}$ for large k, is an eigenvalue of A.

This also reveals a (simple!) deflation technique: if the $(n, 1)$, $(n, 2), \cdots,(n, n-1)$ entries of $A_{k}^{Q R}$ are all close to zero, then:

- the $(n-1) \times(n-1)$ principal submatrix of $A_{k}^{Q R}$ is a matrix whose eigenvalues matches the remaining eigenvalues of A.
- The QR algorithm with shifts can now be applied to this principal submatrix.

$$
A_{R}^{Q R}=\left(\sum_{0 \cdots 0}^{0}\left[\begin{array}{l}
0 \\
i \\
0
\end{array}\right)_{\text {match eigenvalues of thais block }}^{n-1}\right. \text {. }
$$

Rayleigh shifts
We haven't discussed how to choose the shifts μ_{k}.
From previous experience: using Rayleigh quotients seems like a good idea. (This is what Rayleigh iteration chooses.)

Rayleigh shifts

We haven't discussed how to choose the shifts μ_{k}.
From previous experience: using Rayleigh quotients seems like a good idea.
We know the last column, call it q, of $\prod_{j=1}^{k} Q_{k}^{Q R}$ is close to an eigenvector.
Then:

$$
\widetilde{V} \Rightarrow A_{k}^{a R}=(\widetilde{V})^{\star} A(\widetilde{V})
$$

$$
R_{A}(q)=\left(A_{k}^{Q R}\right)_{n, n}
$$

Thus, computing Rayleigh quotients is easy.
Setting $\mu_{k}=\left(A_{k}^{Q R}\right)_{n, n}$ is called a Rayleigh shift.

QR with shifts and details

The QR algorithm with shifts.
Set $A_{0}^{Q R}=A$ and $\mu_{0}=f$. For $k=1,2, \ldots$,

- $Q_{k}^{Q R} R_{k}^{Q R}=A_{k-1}^{Q R}-\mu_{k-1} I$
- $A_{k}^{Q R}=R_{k}^{Q R} Q_{k}^{Q R}+\mu_{k-1} I$
- $\mu_{k}=\left(A_{k}^{Q R}\right)_{n, n}$ (Rayleigh shift)
- If the last row of $A_{k}^{Q R}$ is a multiple of e_{n} :
- μ_{k} is an eigenvalue of A,
-Run this algorithm on the $(n-1) \times(n-1)$ principal submatrix of $A_{k}^{Q R}$
$A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \quad \mu_{0}=0 \Rightarrow A_{k}^{R R}=A \forall k$.

