L20-S00

Eigenvalue algorithms: The QR algorithm
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Simultaneous power iteration, |
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Simultaneous power iteration, | 120-501

Let (A\j,v;)7—; be the ordered eigenpairs of A, with |A;| > |A;11].

As relatively ineffective as power iteration is, consider applying it to 2 vectors
v, w, which have expansions

n N
v = chfuj, w = Zdjvj.
j=1 j=1
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Simultaneous power iteration, | 120-502

Extending this argument, if W is some square, full-rank matrix, then
A*W = QR ~ VR,

where V' is the eigenvector matrix for A. ’\
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Simultaneous power iteration, | 120-502

Extending this argument, if W is some square, full-rank matrix, then
A*W = QR ~ VR,
where V' is the eigenvector matrix for A.

We'll slightly modify simultaneous power iteration: perform orthogonalization
at every step:[/JW db@V\L
Initialize Q¥ =1. Fork=0,1,...,

Ak+1 = AQkPI

. API
2. Qk—i—l k-l—l Ak-l—l

For large k, we expect Q£ — V.
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Simultaneous power iteration, | 120-502

Extending this argument, if W is some square, full-rank matrix, then
A*W = QR ~ VR,
where V' is the eigenvector matrix for A.

We'll slightly modify simultaneous power iteration: perform orthogonalization
at every step:

Initialize Q¥ =1. Fork=0,1,...,
Ak+1 = AQkPI

. API
2. Qk—i—l k-l—l Ak-l—l

For large k, we expect Q£ — V. In fact, we can show that if we have the
QR decomposition A*¥ = Q Ry, then

Qu Ry 'Ry - By = QiR

| . o aealr )V
So simultaneous power iteration compute @y, implicitly. i< =K Y7o

MATH 6610-001 — U. Utah The QR algorithm



The QR algorithm L20-503

The QR algorithm is a procedure for computing eigenvalues.

(It is distinct from the QR decomposition, but does use QR decompositions.)

The algorithm is so striking that we'll introduce it first without explanation.

As usual we assume A is Hermitian, so that it has a unitary diagonalization:
A=VAV*,
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The QR algorithm L20-503

The QR algorithm is a procedure for computing eigenvalues.

(It is distinct from the QR decomposition, but does use QR decompositions.)

The algorithm is so striking that we'll introduce it first without explanation.

As usual we assume A is Hermitian, so that it has a unitary diagonalization:
A=VAV*,

1. Compute A = QR, the QR decomposition of A
2. Replace A by the procedure A — RQ)
3. Return to step 1

In the limit of an infinite number of iterations, A converges to A.
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The QR algorithm L20-503

The QR algorithm is a procedure for computing eigenvalues.

(It is distinct from the QR decomposition, but does use QR decompositions.)

The algorithm is so striking that we'll introduce it first without explanation.

As usual we assume A is Hermitian, so that it has a unitary diagonalization:
A=VAV*,

Unshilted /Pace” QR al loeishm,

1. Compute A = QR, the QR decomp05|t|on of A
2. Replace A by the procedure A — RQ)
3. Return to step 1
In the limit of an infinite number of iterations, A converges to A. ( ' ' ' \

At face value, it's remarkable that this algorithm does anything useful.

In fact, this actually is performing simultaneous power iteration in disguise.
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The QR algorithm and simultaneous power iteralfizooﬁSO4

We can now understand why the QR algorithm and simultaneous power
iteration are performing similar operations.
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The QR algorithm and simultaneous power iteralfizooﬁSO

We can now understand why the QR algorithm and simultaneous power
iteration are performing similar operations.

A useful fact from the QR algorithm is the following relationship:

QRAQR _ AQ
R77Q7 = QrRRyerhy

Fom algorkim: Q. R2= A"
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The QR algorithm and simultaneous power iteralfi%oﬁSO4

We can now understand why the QR algorithm and simultaneous power
iteration are performing similar operations.

A useful fact from the QR algorithm is the following relationship:

REFQET = Q¥ mRZE 2, j= L

This last relation yields the following result via induction:
k QRAHQR QR QR pQR QR
A :(Ql 2 Wk ) (sz Ry 1 )

Prsof (ioduchan)
e A= AR =GN R

S%fﬂ of q(gon%m.
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The QR algorithm’s QR decomposition L20-505

Finally, we can uncover what the QR algorithm is doing since we have
uncovered two QR decompositions of A:

A = (QEnQE™ . QP) (RETRES. . RY)

AF = QE (RE'RET, - R

=2 (uf)% Unigyess s/gns) Qirf@.{ak"@@ﬂ

MATH 6610-001 — U. Utah The QR algorithm



The QR algorithm’s QR decomposition L20-505

Finally, we can uncover what the QR algorithm is doing since we have
uncovered two QR decompositions of A:

A = (Q27Q9" Q2" (ROFREE ... RO

AF = QE (RE'RET, - R

Therefore: with A = VAV™ the eigenvalue decomposition of A, then:

k
(F g™ q2") - ot 2 v
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The QR algorithm’s QR decomposition L20-505

Finally, we can uncover what the QR algorithm is doing since we have
uncovered two QR decompositions of A:

A = (Q27Q9" Q2" (ROFREE ... RO

AF = QY (RE'REY, -+ R
Therefore: with A = VAV™ the eigenvalue decomposition of A, then:

k
(F g™ q2") - ot 2 v

Great, but the QR algorithm doesn’t compute the entire matrix,
(Q?R SQR o QkQR)
QR

it just computes QkQR_ /jYCh(qM,g, IG%% havt K
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The QR algorithm computes eigenvalues 120-506

What does the QR algorithm compute? Basically just AkQR.
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The QR algorithm computes eigenvalues 120-506

What does the QR algorithm compute? Basically just AkQR.

The final property to note is that AgR is unitarily equivalent to A:

AQR (QQR . kQR)* A (QQR

Pm‘c RQQ-
o /4(90., RQRA@'( } S K of O Q@””Z%’
K K
(@) 0" R

Ty A o -
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The QR algorithm computes eigenvalues 120-506

What does the QR algorithm compute? Basically just AkQR.

The final property to note is that AgR is unitarily equivalent to A:

AQR (QQR 3 kQR)* A (Q?R gng kQR)-
But we know that (QQR x kQ ) — V. Therefore:
e gR...QgR)* 4 (QerQe™.- gff)
k1o

S V*AV = A.
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The QR algorithm and convergence L20-507

The QR algorithm therefore performs an eigenvalue decomposition. For real,
symmetric matrices, we have convergence

A9 A

with error c*, where ¢ depends on the ratio of magnitude of consecutive
(ordered) eigenvalues.
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The QR algorithm and convergence L20-507

The QR algorithm therefore performs an eigenvalue decomposition. For real,
symmetric matrices, we have convergence

AkQR — A,

with error c*, where ¢ depends on the ratio of magnitude of consecutive
(ordered) eigenvalues.

In fact: the real symmetric assumption is not necessary. For (fairly) general

matrices A, the QR algorithm computes AgR that converges to the Schur
factor T" in the Schur decomposition

A= QTQ*.
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