Eigenvalue algorithms: The QR algorithm

MATH 6610 Lecture 20

October 23, 2020

Trefethen \& Bau: Lecture 28

Simultaneous power iteration, I

Let $\left(\lambda_{j}, v_{j}\right)_{j=1}^{n}$ be the ordered eigenpairs of A, with $\left|\lambda_{j}\right|>\left|\lambda_{j+1}\right|$.
As relatively ineffective as power iteration is, consider applying it to 2 vectors v, w, which have expansions

$$
v=\sum_{j=1}^{n} c_{j} v_{j}
$$

$$
w=\sum_{j=1}^{N} d_{j} v_{j} .
$$

Simultaneous power iteration, I

Let $\left(\lambda_{j}, v_{j}\right)_{j=1}^{n}$ be the ordered eigenpairs of A, with $\left|\lambda_{j}\right|>\left|\lambda_{j+1}\right|$.
As relatively ineffective as power iteration is, consider applying it to 2 vectors v, w, which have expansions

$$
v=\sum_{j=1}^{n} c_{j} v_{j}, \quad w=\sum_{j=1}^{N} d_{j} v_{j}
$$

For large k, then:

$$
\left.\begin{array}{rl}
A^{k}\left[\begin{array}{ll}
v & w
\end{array}\right] & \approx\left(\begin{array}{ll}
\lambda_{1}^{k} c_{1} v_{1} & \lambda_{1}^{k}\left[d_{1} v_{1}+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} v_{2}\right.
\end{array}\right]
\end{array}\right)
$$

Simultaneous power iteration, II

Extending this argument, if W is some square, full-rank matrix, then

$$
A^{k} W=Q R \approx V R,
$$

where V is the eigenvector matrix for A.

Simultaneous power iteration, II

Extending this argument, if W is some square, full-rank matrix, then

$$
A^{k} W=Q R \approx V R
$$

where V is the eigenvector matrix for A.
We'll slightly modify simultaneous power iteration: perform orthogonalization at every step:

Initialize $Q_{0}^{P I}=I$. For $k=0,1, \ldots$,

1. $A_{k+1}^{P I}:=A Q_{k}^{P I}$
2. $Q_{k+1}^{P I} R_{k+1}^{P I}:=A_{k+1}^{P I}$

For large k, we expect $Q_{k}^{P I} \rightarrow V$.

Simultaneous power iteration, II

Extending this argument, if W is some square, full-rank matrix, then

$$
A^{k} W=Q R \approx V R,
$$

where V is the eigenvector matrix for A.
We'll slightly modify simultaneous power iteration: perform orthogonalization at every step:

Initialize $Q_{0}^{P I}=I$. For $k=0,1, \ldots$,

1. $A_{k+1}^{P I}:=A Q_{k}^{P I}$
2. $Q_{k+1}^{P I} R_{k+1}^{P I}:=A_{k+1}^{P I}$

For large k, we expect $Q_{k}^{P I} \rightarrow V$. In fact, we can show that if we have the $Q R$ decomposition $A^{k}=Q_{k} R_{k}$, then

$$
Q_{k}^{P I} R_{k}^{P I} R_{k-1}^{P I} \cdots R_{1}^{P I}=Q_{k} R_{k}
$$

So simultaneous power iteration compute Q_{k} implicitly.

The QR algorithm

The QR algorithm is a procedure for computing eigenvalues.
(It is distinct from the QR decomposition, but does use QR decompositions.)
The algorithm is so striking that we'll introduce it first without explanation. As usual we assume A is Hermitian, so that it has a unitary diagonalization: $A=V \Lambda V^{*}$.

The QR algorithm

The QR algorithm is a procedure for computing eigenvalues.
(It is distinct from the QR decomposition, but does use QR decompositions.)
The algorithm is so striking that we'll introduce it first without explanation. As usual we assume A is Hermitian, so that it has a unitary diagonalization: $A=V \Lambda V^{*}$.

1. Compute $A=Q R$, the QR decomposition of A
2. Replace A by the procedure $A \leftarrow R Q$
3. Return to step 1

In the limit of an infinite number of iterations, A converges to Λ.

The QR algorithm

The QR algorithm is a procedure for computing eigenvalues.
(It is distinct from the QR decomposition, but does use QR decompositions.)
The algorithm is so striking that we'll introduce it first without explanation.
As usual we assume A is Hermitian, so that it has a unitary diagonalization: $A=V \Lambda V^{*}$.

1. Compute $A=Q R$, the QR decomposition of A
2. Replace A by the procedure $A \leftarrow R Q$
3. Return to step 1

In the limit of an infinite number of iterations, A converges to Λ.
At face value, it's remarkable that this algorithm does anything useful.
In fact, this actually is performing simultaneous power iteration in disguise.

The QR algorithm and simultaneous power iteration ${ }^{20}$-S04

We can now understand why the QR algorithm and simultaneous power iteration are performing similar operations.

The QR algorithm and simultaneous power iteration ${ }^{20-504}$

We can now understand why the QR algorithm and simultaneous power iteration are performing similar operations.

A useful fact from the QR algorithm is the following relationship:

$$
R_{j}^{Q R} Q_{j}^{Q R}=Q_{j+1}^{Q} R R_{j+1}^{Q} R, \quad j \geqslant 1
$$

The QR algorithm and simultaneous power iteration ${ }^{20}$ S04

We can now understand why the QR algorithm and simultaneous power iteration are performing similar operations.

A useful fact from the QR algorithm is the following relationship:

$$
R_{j}^{Q R} Q_{j}^{Q R}=Q_{j+1}^{Q} R R_{j+1}^{Q} R, \quad j \geqslant 1
$$

This last relation yields the following result via induction:

$$
A^{k}=\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)\left(R_{k}^{Q R} R_{k-1}^{Q R} \cdots R_{1}^{Q R}\right)
$$

The QR algorithm's QR decomposition

Finally, we can uncover what the QR algorithm is doing since we have uncovered two QR decompositions of A :

$$
\begin{aligned}
A^{k} & =\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)\left(R_{k}^{Q R} R_{k-1}^{Q R} \cdots R_{1}^{Q R}\right) \\
A^{k} & =Q_{k}^{P I}\left(R_{k}^{P I} R_{k-1}^{P I} \cdots R_{1}^{P I}\right)
\end{aligned}
$$

The QR algorithm's QR decomposition

Finally, we can uncover what the QR algorithm is doing since we have uncovered two QR decompositions of A :

$$
\begin{aligned}
A^{k} & =\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)\left(R_{k}^{Q R} R_{k-1}^{Q R} \cdots R_{1}^{Q R}\right) \\
A^{k} & =Q_{k}^{P I}\left(R_{k}^{P I} R_{k-1}^{P I} \cdots R_{1}^{P I}\right)
\end{aligned}
$$

Therefore: with $A=V \Lambda V^{*}$ the eigenvalue decomposition of A, then:

$$
\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)=Q_{k}^{P I} \xrightarrow{k \uparrow \infty} V .
$$

The QR algorithm's QR decomposition

Finally, we can uncover what the QR algorithm is doing since we have uncovered two QR decompositions of A :

$$
\begin{aligned}
A^{k} & =\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)\left(R_{k}^{Q R} R_{k-1}^{Q R} \cdots R_{1}^{Q R}\right) \\
A^{k} & =Q_{k}^{P I}\left(R_{k}^{P I} R_{k-1}^{P I} \cdots R_{1}^{P I}\right)
\end{aligned}
$$

Therefore: with $A=V \Lambda V^{*}$ the eigenvalue decomposition of A, then:

$$
\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)=Q_{k}^{P I} \xrightarrow{k \uparrow \infty} V .
$$

Great, but the QR algorithm doesn't compute the entire matrix,

$$
\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)
$$

it just computes $Q_{k}^{Q R}$.

The QR algorithm computes eigenvalues

What does the QR algorithm compute? Basically just $A_{k}^{Q R}$.

The QR algorithm computes eigenvalues

What does the QR algorithm compute? Basically just $A_{k}^{Q R}$.
The final property to note is that $A_{k}^{Q R}$ is unitarily equivalent to A :

$$
A_{k}^{Q R}=\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)^{*} \quad A \quad\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right) .
$$

The QR algorithm computes eigenvalues

What does the QR algorithm compute? Basically just $A_{k}^{Q R}$.
The final property to note is that $A_{k}^{Q R}$ is unitarily equivalent to A :

$$
A_{k}^{Q R}=\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)^{*} \quad A \quad\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right) .
$$

But we know that $\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right) \rightarrow V$. Therefore:

$$
\begin{aligned}
A_{k}^{Q R} & =\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right)^{*} A\left(Q_{1}^{Q R} Q_{2}^{Q R} \cdots Q_{k}^{Q R}\right) \\
& \stackrel{k \uparrow \infty}{\rightarrow} V^{*} A V=\Lambda .
\end{aligned}
$$

The QR algorithm and convergence

The QR algorithm therefore performs an eigenvalue decomposition. For real, symmetric matrices, we have convergence

$$
A_{k}^{Q R} \rightarrow \Lambda,
$$

with error c^{k}, where c depends on the ratio of magnitude of consecutive (ordered) eigenvalues.

The QR algorithm and convergence

The QR algorithm therefore performs an eigenvalue decomposition. For real, symmetric matrices, we have convergence

$$
A_{k}^{Q R} \rightarrow \Lambda,
$$

with error c^{k}, where c depends on the ratio of magnitude of consecutive (ordered) eigenvalues.

In fact: the real symmetric assumption is not necessary. For (fairly) general matrices A, the QR algorithm computes $A_{k}^{Q R}$ that converges to the Schur factor T in the Schur decomposition

$$
A=Q T Q^{*}
$$

