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L20-S01Simultaneous power iteration, I

Let pλj , vjqnj“1 be the ordered eigenpairs of A, with |λj | ą |λj`1|.

As relatively ineffective as power iteration is, consider applying it to 2 vectors
v, w, which have expansions

v “
n
ÿ

j“1

cjvj , w “
N
ÿ

j“1

djvj .

For large k, then:

Ak rv ws «

ˆ

λk1c1v1 λk1

„

d1v1 `
´

λ2

λ1

¯k

v2

 ˙

“ pv1 v2q

˜

c1λ
k
1 d1λ

k
1

0 d2

´

λ2

λ1

¯k

¸

“: QR
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L20-S02Simultaneous power iteration, II

Extending this argument, if W is some square, full-rank matrix, then

AkW “ QR « V R,

where V is the eigenvector matrix for A.

We’ll slightly modify simultaneous power iteration: perform orthogonalization
at every step:

Initialize QPI0 “ I. For k “ 0, 1, . . .,
1. APIk`1 :“ AQPIk
2. QPIk`1R

PI
k`1 :“ APIk`1

For large k, we expect QPIk Ñ V . In fact, we can show that if we have the
QR decomposition Ak “ QkRk, then

QPIk RPIk RPIk´1 ¨ ¨ ¨R
PI
1 “ QkRk

So simultaneous power iteration compute Qk implicitly.
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L20-S03The QR algorithm

The QR algorithm is a procedure for computing eigenvalues.

(It is distinct from the QR decomposition, but does use QR decompositions.)

The algorithm is so striking that we’ll introduce it first without explanation.

As usual we assume A is Hermitian, so that it has a unitary diagonalization:
A “ V ΛV ˚.

1. Compute A “ QR, the QR decomposition of A
2. Replace A by the procedure AÐ RQ

3. Return to step 1

In the limit of an infinite number of iterations, A converges to Λ.

At face value, it’s remarkable that this algorithm does anything useful.

In fact, this actually is performing simultaneous power iteration in disguise.
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L20-S04The QR algorithm and simultaneous power iteration

We can now understand why the QR algorithm and simultaneous power
iteration are performing similar operations.

A useful fact from the QR algorithm is the following relationship:

RQRj QQRj “ QQj`1RR
Q
j`1R, j ě 1.

This last relation yields the following result via induction:

Ak “
´

QQR1 QQR2 ¨ ¨ ¨QQRk

¯ ´

RQRk RQRk´1 ¨ ¨ ¨R
QR
1

¯
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L20-S05The QR algorithm’s QR decomposition

Finally, we can uncover what the QR algorithm is doing since we have
uncovered two QR decompositions of A:

Ak “
´

QQR1 QQR2 ¨ ¨ ¨QQRk

¯ ´

RQRk RQRk´1 ¨ ¨ ¨R
QR
1

¯

Ak “ QPIk
`

RPIk RPIk´1 ¨ ¨ ¨R
PI
1

˘

Therefore: with A “ V ΛV ˚ the eigenvalue decomposition of A, then:
´

QQR1 QQR2 ¨ ¨ ¨QQRk

¯

“ QPIk
kÒ8
ÝÑ V.

Great, but the QR algorithm doesn’t compute the entire matrix,
´

QQR1 QQR2 ¨ ¨ ¨QQRk

¯

,

it just computes QQRk .
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L20-S06The QR algorithm computes eigenvalues

What does the QR algorithm compute? Basically just AQRk .

The final property to note is that AQRk is unitarily equivalent to A:

AQRk “

´

QQR1 QQR2 ¨ ¨ ¨QQRk

¯˚

A
´

QQR1 QQR2 ¨ ¨ ¨QQRk

¯

.

But we know that
´

QQR1 QQR2 ¨ ¨ ¨QQRk

¯

Ñ V . Therefore:

AQRk “

´

QQR1 QQR2 ¨ ¨ ¨QQRk

¯˚

A
´

QQR1 QQR2 ¨ ¨ ¨QQRk

¯

kÒ8
Ñ V ˚AV “ Λ.

MATH 6610-001 – U. Utah The QR algorithm



L20-S06The QR algorithm computes eigenvalues

What does the QR algorithm compute? Basically just AQRk .

The final property to note is that AQRk is unitarily equivalent to A:

AQRk “

´

QQR1 QQR2 ¨ ¨ ¨QQRk

¯˚

A
´

QQR1 QQR2 ¨ ¨ ¨QQRk

¯

.

But we know that
´

QQR1 QQR2 ¨ ¨ ¨QQRk

¯

Ñ V . Therefore:

AQRk “

´

QQR1 QQR2 ¨ ¨ ¨QQRk

¯˚

A
´

QQR1 QQR2 ¨ ¨ ¨QQRk

¯

kÒ8
Ñ V ˚AV “ Λ.

MATH 6610-001 – U. Utah The QR algorithm



L20-S06The QR algorithm computes eigenvalues

What does the QR algorithm compute? Basically just AQRk .

The final property to note is that AQRk is unitarily equivalent to A:

AQRk “

´

QQR1 QQR2 ¨ ¨ ¨QQRk

¯˚

A
´

QQR1 QQR2 ¨ ¨ ¨QQRk

¯

.

But we know that
´

QQR1 QQR2 ¨ ¨ ¨QQRk

¯

Ñ V . Therefore:

AQRk “

´

QQR1 QQR2 ¨ ¨ ¨QQRk

¯˚

A
´

QQR1 QQR2 ¨ ¨ ¨QQRk

¯

kÒ8
Ñ V ˚AV “ Λ.

MATH 6610-001 – U. Utah The QR algorithm



L20-S07The QR algorithm and convergence

The QR algorithm therefore performs an eigenvalue decomposition. For real,
symmetric matrices, we have convergence

AQRk Ñ Λ,

with error ck, where c depends on the ratio of magnitude of consecutive
(ordered) eigenvalues.

In fact: the real symmetric assumption is not necessary. For (fairly) general
matrices A, the QR algorithm computes AQRk that converges to the Schur
factor T in the Schur decomposition

A “ QTQ˚.
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